Patterns in inequalities of triangle involving angles.
$begingroup$
I was reading this page and wondered as why, inequalities for $cos A$ (with argument $A$) become the same inequality for $sinfrac{A}{2}$ (with argument $frac{A}{2}$), similarly for $tan$ and $cot$.
Examples,
$$sinfrac{A}{2}sinfrac{B}{2}sinfrac{C}{2}lefrac{1}{8}$$$$cos Acos Bcos Clefrac{1}{8}$$
and
$$cos (A)+cos (B)+cos (C)lefrac{3}{2}$$$$displaystylesinfrac{A}{2}+sinfrac{B}{2}+sinfrac{C}{2}lefrac{3}{2}$$
Is there some greater Mathematics involved or just a pretty coincidence?
trigonometry inequality triangle geometric-inequalities
$endgroup$
add a comment |
$begingroup$
I was reading this page and wondered as why, inequalities for $cos A$ (with argument $A$) become the same inequality for $sinfrac{A}{2}$ (with argument $frac{A}{2}$), similarly for $tan$ and $cot$.
Examples,
$$sinfrac{A}{2}sinfrac{B}{2}sinfrac{C}{2}lefrac{1}{8}$$$$cos Acos Bcos Clefrac{1}{8}$$
and
$$cos (A)+cos (B)+cos (C)lefrac{3}{2}$$$$displaystylesinfrac{A}{2}+sinfrac{B}{2}+sinfrac{C}{2}lefrac{3}{2}$$
Is there some greater Mathematics involved or just a pretty coincidence?
trigonometry inequality triangle geometric-inequalities
$endgroup$
$begingroup$
math.stackexchange.com/questions/952893/…. math.stackexchange.com/questions/1374163/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
I was reading this page and wondered as why, inequalities for $cos A$ (with argument $A$) become the same inequality for $sinfrac{A}{2}$ (with argument $frac{A}{2}$), similarly for $tan$ and $cot$.
Examples,
$$sinfrac{A}{2}sinfrac{B}{2}sinfrac{C}{2}lefrac{1}{8}$$$$cos Acos Bcos Clefrac{1}{8}$$
and
$$cos (A)+cos (B)+cos (C)lefrac{3}{2}$$$$displaystylesinfrac{A}{2}+sinfrac{B}{2}+sinfrac{C}{2}lefrac{3}{2}$$
Is there some greater Mathematics involved or just a pretty coincidence?
trigonometry inequality triangle geometric-inequalities
$endgroup$
I was reading this page and wondered as why, inequalities for $cos A$ (with argument $A$) become the same inequality for $sinfrac{A}{2}$ (with argument $frac{A}{2}$), similarly for $tan$ and $cot$.
Examples,
$$sinfrac{A}{2}sinfrac{B}{2}sinfrac{C}{2}lefrac{1}{8}$$$$cos Acos Bcos Clefrac{1}{8}$$
and
$$cos (A)+cos (B)+cos (C)lefrac{3}{2}$$$$displaystylesinfrac{A}{2}+sinfrac{B}{2}+sinfrac{C}{2}lefrac{3}{2}$$
Is there some greater Mathematics involved or just a pretty coincidence?
trigonometry inequality triangle geometric-inequalities
trigonometry inequality triangle geometric-inequalities
edited 16 mins ago
Michael Rozenberg
102k1791195
102k1791195
asked 2 hours ago
mnulbmnulb
1,408823
1,408823
$begingroup$
math.stackexchange.com/questions/952893/…. math.stackexchange.com/questions/1374163/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
math.stackexchange.com/questions/952893/…. math.stackexchange.com/questions/1374163/…
$endgroup$
– lab bhattacharjee
1 hour ago
$begingroup$
math.stackexchange.com/questions/952893/…. math.stackexchange.com/questions/1374163/…
$endgroup$
– lab bhattacharjee
1 hour ago
$begingroup$
math.stackexchange.com/questions/952893/…. math.stackexchange.com/questions/1374163/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Great observation, I never noticed that before. It's not a coincidence, here is an explanation.
Rewrite the sine terms as cosines, for example,
$$cos(90^circ-tfrac A2)+cos(90^circ-tfrac B2)+cos(90^circ-tfrac C2)letfrac32 .$$
Now
$$eqalign{
A,B,C& hbox{are the angles of a triangle}cr
&Leftrightarrowquad A+B+C=180^circcr
&Leftrightarrowquad tfrac A2+tfrac B2+tfrac C2=90^circcr
&Leftrightarrowquad (90^circ-tfrac A2)+(90^circ-tfrac B2)+(90^circ-tfrac C2)=180^circcr
&Leftrightarrowquad (90^circ-tfrac A2),(90^circ-tfrac B2),(90^circ-tfrac C2) hbox{are the angles of a triangle}cr}$$
So, in this context,
- anything true for all triangles that you can say about $A,B,C$ will also be true about $(90^circ-frac A2),(90^circ-frac B2),(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $cos(90^circ-frac A2),cos(90^circ-frac B2),cos(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $sinfrac A2,sinfrac B2,sinfrac C2$.
$endgroup$
1
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3104700%2fpatterns-in-inequalities-of-triangle-involving-angles%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Great observation, I never noticed that before. It's not a coincidence, here is an explanation.
Rewrite the sine terms as cosines, for example,
$$cos(90^circ-tfrac A2)+cos(90^circ-tfrac B2)+cos(90^circ-tfrac C2)letfrac32 .$$
Now
$$eqalign{
A,B,C& hbox{are the angles of a triangle}cr
&Leftrightarrowquad A+B+C=180^circcr
&Leftrightarrowquad tfrac A2+tfrac B2+tfrac C2=90^circcr
&Leftrightarrowquad (90^circ-tfrac A2)+(90^circ-tfrac B2)+(90^circ-tfrac C2)=180^circcr
&Leftrightarrowquad (90^circ-tfrac A2),(90^circ-tfrac B2),(90^circ-tfrac C2) hbox{are the angles of a triangle}cr}$$
So, in this context,
- anything true for all triangles that you can say about $A,B,C$ will also be true about $(90^circ-frac A2),(90^circ-frac B2),(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $cos(90^circ-frac A2),cos(90^circ-frac B2),cos(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $sinfrac A2,sinfrac B2,sinfrac C2$.
$endgroup$
1
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
add a comment |
$begingroup$
Great observation, I never noticed that before. It's not a coincidence, here is an explanation.
Rewrite the sine terms as cosines, for example,
$$cos(90^circ-tfrac A2)+cos(90^circ-tfrac B2)+cos(90^circ-tfrac C2)letfrac32 .$$
Now
$$eqalign{
A,B,C& hbox{are the angles of a triangle}cr
&Leftrightarrowquad A+B+C=180^circcr
&Leftrightarrowquad tfrac A2+tfrac B2+tfrac C2=90^circcr
&Leftrightarrowquad (90^circ-tfrac A2)+(90^circ-tfrac B2)+(90^circ-tfrac C2)=180^circcr
&Leftrightarrowquad (90^circ-tfrac A2),(90^circ-tfrac B2),(90^circ-tfrac C2) hbox{are the angles of a triangle}cr}$$
So, in this context,
- anything true for all triangles that you can say about $A,B,C$ will also be true about $(90^circ-frac A2),(90^circ-frac B2),(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $cos(90^circ-frac A2),cos(90^circ-frac B2),cos(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $sinfrac A2,sinfrac B2,sinfrac C2$.
$endgroup$
1
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
add a comment |
$begingroup$
Great observation, I never noticed that before. It's not a coincidence, here is an explanation.
Rewrite the sine terms as cosines, for example,
$$cos(90^circ-tfrac A2)+cos(90^circ-tfrac B2)+cos(90^circ-tfrac C2)letfrac32 .$$
Now
$$eqalign{
A,B,C& hbox{are the angles of a triangle}cr
&Leftrightarrowquad A+B+C=180^circcr
&Leftrightarrowquad tfrac A2+tfrac B2+tfrac C2=90^circcr
&Leftrightarrowquad (90^circ-tfrac A2)+(90^circ-tfrac B2)+(90^circ-tfrac C2)=180^circcr
&Leftrightarrowquad (90^circ-tfrac A2),(90^circ-tfrac B2),(90^circ-tfrac C2) hbox{are the angles of a triangle}cr}$$
So, in this context,
- anything true for all triangles that you can say about $A,B,C$ will also be true about $(90^circ-frac A2),(90^circ-frac B2),(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $cos(90^circ-frac A2),cos(90^circ-frac B2),cos(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $sinfrac A2,sinfrac B2,sinfrac C2$.
$endgroup$
Great observation, I never noticed that before. It's not a coincidence, here is an explanation.
Rewrite the sine terms as cosines, for example,
$$cos(90^circ-tfrac A2)+cos(90^circ-tfrac B2)+cos(90^circ-tfrac C2)letfrac32 .$$
Now
$$eqalign{
A,B,C& hbox{are the angles of a triangle}cr
&Leftrightarrowquad A+B+C=180^circcr
&Leftrightarrowquad tfrac A2+tfrac B2+tfrac C2=90^circcr
&Leftrightarrowquad (90^circ-tfrac A2)+(90^circ-tfrac B2)+(90^circ-tfrac C2)=180^circcr
&Leftrightarrowquad (90^circ-tfrac A2),(90^circ-tfrac B2),(90^circ-tfrac C2) hbox{are the angles of a triangle}cr}$$
So, in this context,
- anything true for all triangles that you can say about $A,B,C$ will also be true about $(90^circ-frac A2),(90^circ-frac B2),(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $cos(90^circ-frac A2),cos(90^circ-frac B2),cos(90^circ-frac C2)$;
- hence, anything true for all triangles that you can say about $cos A,cos B,cos C$ will also be true about $sinfrac A2,sinfrac B2,sinfrac C2$.
answered 1 hour ago
DavidDavid
68.5k664126
68.5k664126
1
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
add a comment |
1
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
1
1
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Nice explanation.
$endgroup$
– marty cohen
1 hour ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
$begingroup$
Very nice! I agree. +1
$endgroup$
– Michael Rozenberg
18 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3104700%2fpatterns-in-inequalities-of-triangle-involving-angles%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/952893/…. math.stackexchange.com/questions/1374163/…
$endgroup$
– lab bhattacharjee
1 hour ago