Is it true that if $H_1$ and $H_2$ are isomorphic cyclic subgroups of $G$, then $G/H_1cong G/H_2$?











up vote
1
down vote

favorite












I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?



For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?










share|cite|improve this question
























  • You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
    – Qiaochu Yuan
    19 hours ago












  • @QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
    – Derek Holt
    19 hours ago










  • I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
    – the_fox
    19 hours ago










  • @Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
    – Qiaochu Yuan
    18 hours ago












  • I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
    – Derek Holt
    16 hours ago















up vote
1
down vote

favorite












I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?



For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?










share|cite|improve this question
























  • You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
    – Qiaochu Yuan
    19 hours ago












  • @QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
    – Derek Holt
    19 hours ago










  • I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
    – the_fox
    19 hours ago










  • @Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
    – Qiaochu Yuan
    18 hours ago












  • I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
    – Derek Holt
    16 hours ago













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?



For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?










share|cite|improve this question















I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?



For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?







group-theory normal-subgroups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 20 hours ago









Asaf Karagila

299k32420750




299k32420750










asked yesterday









user573497

15919




15919












  • You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
    – Qiaochu Yuan
    19 hours ago












  • @QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
    – Derek Holt
    19 hours ago










  • I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
    – the_fox
    19 hours ago










  • @Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
    – Qiaochu Yuan
    18 hours ago












  • I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
    – Derek Holt
    16 hours ago


















  • You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
    – Qiaochu Yuan
    19 hours ago












  • @QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
    – Derek Holt
    19 hours ago










  • I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
    – the_fox
    19 hours ago










  • @Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
    – Qiaochu Yuan
    18 hours ago












  • I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
    – Derek Holt
    16 hours ago
















You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
19 hours ago






You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
19 hours ago














@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
19 hours ago




@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
19 hours ago












I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
19 hours ago




I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
19 hours ago












@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
18 hours ago






@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
18 hours ago














I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
16 hours ago




I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
16 hours ago










2 Answers
2






active

oldest

votes

















up vote
8
down vote













No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.






share|cite|improve this answer




























    up vote
    2
    down vote













    Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?






    share|cite|improve this answer





















    • But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
      – user573497
      yesterday











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012280%2fis-it-true-that-if-h-1-and-h-2-are-isomorphic-cyclic-subgroups-of-g-then%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    8
    down vote













    No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.






    share|cite|improve this answer

























      up vote
      8
      down vote













      No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.






      share|cite|improve this answer























        up vote
        8
        down vote










        up vote
        8
        down vote









        No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.






        share|cite|improve this answer












        No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        the_fox

        2,1111429




        2,1111429






















            up vote
            2
            down vote













            Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?






            share|cite|improve this answer





















            • But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
              – user573497
              yesterday















            up vote
            2
            down vote













            Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?






            share|cite|improve this answer





















            • But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
              – user573497
              yesterday













            up vote
            2
            down vote










            up vote
            2
            down vote









            Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?






            share|cite|improve this answer












            Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            Bartosz Malman

            7181520




            7181520












            • But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
              – user573497
              yesterday


















            • But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
              – user573497
              yesterday
















            But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
            – user573497
            yesterday




            But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
            – user573497
            yesterday


















             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012280%2fis-it-true-that-if-h-1-and-h-2-are-isomorphic-cyclic-subgroups-of-g-then%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Accessing regular linux commands in Huawei's Dopra Linux

            Can't connect RFCOMM socket: Host is down

            Kernel panic - not syncing: Fatal Exception in Interrupt