Drawing hexagonal prisms












0















Simmilar to:
Drawing spheres



I want to draw multiple 3D hexagonal cylinders like this one:



enter image description here



with different sizes and positions.










share|improve this question

























  • This is called a hexagonal prism. en.wikipedia.org/wiki/Prism_(geometry)

    – AndréC
    12 mins ago
















0















Simmilar to:
Drawing spheres



I want to draw multiple 3D hexagonal cylinders like this one:



enter image description here



with different sizes and positions.










share|improve this question

























  • This is called a hexagonal prism. en.wikipedia.org/wiki/Prism_(geometry)

    – AndréC
    12 mins ago














0












0








0








Simmilar to:
Drawing spheres



I want to draw multiple 3D hexagonal cylinders like this one:



enter image description here



with different sizes and positions.










share|improve this question
















Simmilar to:
Drawing spheres



I want to draw multiple 3D hexagonal cylinders like this one:



enter image description here



with different sizes and positions.







tikz-pgf floats asymptote






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 11 mins ago









AndréC

8,82911447




8,82911447










asked yesterday









Ernesto IglesiasErnesto Iglesias

307




307













  • This is called a hexagonal prism. en.wikipedia.org/wiki/Prism_(geometry)

    – AndréC
    12 mins ago



















  • This is called a hexagonal prism. en.wikipedia.org/wiki/Prism_(geometry)

    – AndréC
    12 mins ago

















This is called a hexagonal prism. en.wikipedia.org/wiki/Prism_(geometry)

– AndréC
12 mins ago





This is called a hexagonal prism. en.wikipedia.org/wiki/Prism_(geometry)

– AndréC
12 mins ago










2 Answers
2






active

oldest

votes


















3














Here is a proposal.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
begin{document}
pgfkeys{/hexagonal prism/.cd,
rotation angle/.initial=0,
height/.initial=4,
diameter/.initial=2
}
tikzset{pics/.cd,
hexi/.style={code={
pgfmathsetmacro{myangle}{mod(pgfkeysvalueof{/hexagonal prism/rotation angle},60)}
pgfmathsetmacro{phieff}{(tdplotmainphi-mod(tdplotmainphi+690,60)+30)}
draw[fill=gray!60] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0)
--({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
draw[fill=gray!20] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0)
--({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
draw[fill=gray!10] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},0)
--({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
ifdimtdplotmaintheta pt<90pt
draw[fill=gray!15] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
else
draw[fill=gray!85] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},0) --
({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},0) -- cycle;
fi
}}}
tdplotsetmaincoords{70}{110}
begin{tikzpicture}[tdplot_main_coords,font=sffamily]
% path[tdplot_screen_coords,use as bounding box] (-3,-1) rectangle (3,5);
pic {hexi};
pic[shift={(5,0,0)},/hexagonal prism/height=3] {hexi};
end{tikzpicture}
end{document}


enter image description here






share|improve this answer

































    3














    Using Asymptote and the unofficial polyhedron_js asymptote package (available here https://github.com/pivaldi/asymptote-packages) you can define easily such a cylinder and play with it.
    Please find the code (assuming that you have polyhedron_js.asy)



    import polyhedron_js;

    // comment the following line for OpenGl
    //settings.render=0;

    settings.tex="pdflatex";
    settings.outformat="pdf"; // for opacity

    size(10cm);

    currentprojection=perspective(7,6,4); //if you want perspectivic look
    //currentprojection=orthographic(1,1,0.5); //if you want othographic look
    currentlight=(1,1,2);
    // currentlight=nolight;


    polyhedron hexa_cyl;
    guide hexa=polygon(6);
    hexa_cyl[0]=(point(hexa,0).x,point(hexa,0).y,0);
    for(int i=1;i<6;++i) hexa_cyl[0]=hexa_cyl[0]--(point(hexa,i).x,point(hexa,i).y,0);
    hexa_cyl[0]=hexa_cyl[0]--cycle;
    for(int i=0;i<6;++i)
    {
    hexa_cyl[i+1]=point(hexa_cyl[0],i)--point(hexa_cyl[0],(i+1)%6)--
    (shift(0,0,1)*point(hexa_cyl[0],(i+1)%6))--(shift(0,0,1)*point(hexa_cyl[0],i))--cycle;
    }
    hexa_cyl[6]=shift(0,0,1)*hexa_cyl[0];


    polyhedron p1={scale(1,1,3)*hexa_cyl};
    polyhedron p2={shift(4,1,1)*rotate(60,(2,1,3))*hexa_cyl};
    polyhedron p3={shift(-2,-2,-2)*rotate(90,(1,0,0))*scale(.5,.5,2)*hexa_cyl};

    filldraw(p1,new pen{0.8green},op=0.9);
    filldraw(p2,new pen{0.8blue},op=0.9);
    filldraw(p3,new pen{0.8yellow},op=0.9);


    and the result
    enter image description here






    share|improve this answer
























    • Oh wow! That's really stunning!

      – marmot
      1 min ago











    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "85"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f473044%2fdrawing-hexagonal-prisms%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3














    Here is a proposal.



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    begin{document}
    pgfkeys{/hexagonal prism/.cd,
    rotation angle/.initial=0,
    height/.initial=4,
    diameter/.initial=2
    }
    tikzset{pics/.cd,
    hexi/.style={code={
    pgfmathsetmacro{myangle}{mod(pgfkeysvalueof{/hexagonal prism/rotation angle},60)}
    pgfmathsetmacro{phieff}{(tdplotmainphi-mod(tdplotmainphi+690,60)+30)}
    draw[fill=gray!60] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0)
    --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
    draw[fill=gray!20] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0)
    --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
    draw[fill=gray!10] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},0)
    --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
    ifdimtdplotmaintheta pt<90pt
    draw[fill=gray!15] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
    else
    draw[fill=gray!85] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},0) --
    ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},0) -- cycle;
    fi
    }}}
    tdplotsetmaincoords{70}{110}
    begin{tikzpicture}[tdplot_main_coords,font=sffamily]
    % path[tdplot_screen_coords,use as bounding box] (-3,-1) rectangle (3,5);
    pic {hexi};
    pic[shift={(5,0,0)},/hexagonal prism/height=3] {hexi};
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer






























      3














      Here is a proposal.



      documentclass[tikz,border=3.14mm]{standalone}
      usepackage{tikz-3dplot}
      begin{document}
      pgfkeys{/hexagonal prism/.cd,
      rotation angle/.initial=0,
      height/.initial=4,
      diameter/.initial=2
      }
      tikzset{pics/.cd,
      hexi/.style={code={
      pgfmathsetmacro{myangle}{mod(pgfkeysvalueof{/hexagonal prism/rotation angle},60)}
      pgfmathsetmacro{phieff}{(tdplotmainphi-mod(tdplotmainphi+690,60)+30)}
      draw[fill=gray!60] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0)
      --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
      draw[fill=gray!20] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0)
      --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
      draw[fill=gray!10] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},0)
      --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
      ifdimtdplotmaintheta pt<90pt
      draw[fill=gray!15] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
      else
      draw[fill=gray!85] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},0) --
      ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},0) -- cycle;
      fi
      }}}
      tdplotsetmaincoords{70}{110}
      begin{tikzpicture}[tdplot_main_coords,font=sffamily]
      % path[tdplot_screen_coords,use as bounding box] (-3,-1) rectangle (3,5);
      pic {hexi};
      pic[shift={(5,0,0)},/hexagonal prism/height=3] {hexi};
      end{tikzpicture}
      end{document}


      enter image description here






      share|improve this answer




























        3












        3








        3







        Here is a proposal.



        documentclass[tikz,border=3.14mm]{standalone}
        usepackage{tikz-3dplot}
        begin{document}
        pgfkeys{/hexagonal prism/.cd,
        rotation angle/.initial=0,
        height/.initial=4,
        diameter/.initial=2
        }
        tikzset{pics/.cd,
        hexi/.style={code={
        pgfmathsetmacro{myangle}{mod(pgfkeysvalueof{/hexagonal prism/rotation angle},60)}
        pgfmathsetmacro{phieff}{(tdplotmainphi-mod(tdplotmainphi+690,60)+30)}
        draw[fill=gray!60] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0)
        --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        draw[fill=gray!20] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0)
        --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        draw[fill=gray!10] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},0)
        --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        ifdimtdplotmaintheta pt<90pt
        draw[fill=gray!15] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        else
        draw[fill=gray!85] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},0) -- cycle;
        fi
        }}}
        tdplotsetmaincoords{70}{110}
        begin{tikzpicture}[tdplot_main_coords,font=sffamily]
        % path[tdplot_screen_coords,use as bounding box] (-3,-1) rectangle (3,5);
        pic {hexi};
        pic[shift={(5,0,0)},/hexagonal prism/height=3] {hexi};
        end{tikzpicture}
        end{document}


        enter image description here






        share|improve this answer















        Here is a proposal.



        documentclass[tikz,border=3.14mm]{standalone}
        usepackage{tikz-3dplot}
        begin{document}
        pgfkeys{/hexagonal prism/.cd,
        rotation angle/.initial=0,
        height/.initial=4,
        diameter/.initial=2
        }
        tikzset{pics/.cd,
        hexi/.style={code={
        pgfmathsetmacro{myangle}{mod(pgfkeysvalueof{/hexagonal prism/rotation angle},60)}
        pgfmathsetmacro{phieff}{(tdplotmainphi-mod(tdplotmainphi+690,60)+30)}
        draw[fill=gray!60] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0)
        --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        draw[fill=gray!20] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0)
        --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        draw[fill=gray!10] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},0)
        --({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle+phieff)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle+phieff)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        ifdimtdplotmaintheta pt<90pt
        draw[fill=gray!15] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},pgfkeysvalueof{/hexagonal prism/height}) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},pgfkeysvalueof{/hexagonal prism/height}) -- cycle;
        else
        draw[fill=gray!85] ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(0+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(0+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-60+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-60+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-120+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-120+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-180+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-180+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-240+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-240+myangle)},0) --
        ({pgfkeysvalueof{/hexagonal prism/diameter}*cos(-300+myangle)},{pgfkeysvalueof{/hexagonal prism/diameter}*sin(-300+myangle)},0) -- cycle;
        fi
        }}}
        tdplotsetmaincoords{70}{110}
        begin{tikzpicture}[tdplot_main_coords,font=sffamily]
        % path[tdplot_screen_coords,use as bounding box] (-3,-1) rectangle (3,5);
        pic {hexi};
        pic[shift={(5,0,0)},/hexagonal prism/height=3] {hexi};
        end{tikzpicture}
        end{document}


        enter image description here







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited yesterday

























        answered yesterday









        marmotmarmot

        97k4112213




        97k4112213























            3














            Using Asymptote and the unofficial polyhedron_js asymptote package (available here https://github.com/pivaldi/asymptote-packages) you can define easily such a cylinder and play with it.
            Please find the code (assuming that you have polyhedron_js.asy)



            import polyhedron_js;

            // comment the following line for OpenGl
            //settings.render=0;

            settings.tex="pdflatex";
            settings.outformat="pdf"; // for opacity

            size(10cm);

            currentprojection=perspective(7,6,4); //if you want perspectivic look
            //currentprojection=orthographic(1,1,0.5); //if you want othographic look
            currentlight=(1,1,2);
            // currentlight=nolight;


            polyhedron hexa_cyl;
            guide hexa=polygon(6);
            hexa_cyl[0]=(point(hexa,0).x,point(hexa,0).y,0);
            for(int i=1;i<6;++i) hexa_cyl[0]=hexa_cyl[0]--(point(hexa,i).x,point(hexa,i).y,0);
            hexa_cyl[0]=hexa_cyl[0]--cycle;
            for(int i=0;i<6;++i)
            {
            hexa_cyl[i+1]=point(hexa_cyl[0],i)--point(hexa_cyl[0],(i+1)%6)--
            (shift(0,0,1)*point(hexa_cyl[0],(i+1)%6))--(shift(0,0,1)*point(hexa_cyl[0],i))--cycle;
            }
            hexa_cyl[6]=shift(0,0,1)*hexa_cyl[0];


            polyhedron p1={scale(1,1,3)*hexa_cyl};
            polyhedron p2={shift(4,1,1)*rotate(60,(2,1,3))*hexa_cyl};
            polyhedron p3={shift(-2,-2,-2)*rotate(90,(1,0,0))*scale(.5,.5,2)*hexa_cyl};

            filldraw(p1,new pen{0.8green},op=0.9);
            filldraw(p2,new pen{0.8blue},op=0.9);
            filldraw(p3,new pen{0.8yellow},op=0.9);


            and the result
            enter image description here






            share|improve this answer
























            • Oh wow! That's really stunning!

              – marmot
              1 min ago
















            3














            Using Asymptote and the unofficial polyhedron_js asymptote package (available here https://github.com/pivaldi/asymptote-packages) you can define easily such a cylinder and play with it.
            Please find the code (assuming that you have polyhedron_js.asy)



            import polyhedron_js;

            // comment the following line for OpenGl
            //settings.render=0;

            settings.tex="pdflatex";
            settings.outformat="pdf"; // for opacity

            size(10cm);

            currentprojection=perspective(7,6,4); //if you want perspectivic look
            //currentprojection=orthographic(1,1,0.5); //if you want othographic look
            currentlight=(1,1,2);
            // currentlight=nolight;


            polyhedron hexa_cyl;
            guide hexa=polygon(6);
            hexa_cyl[0]=(point(hexa,0).x,point(hexa,0).y,0);
            for(int i=1;i<6;++i) hexa_cyl[0]=hexa_cyl[0]--(point(hexa,i).x,point(hexa,i).y,0);
            hexa_cyl[0]=hexa_cyl[0]--cycle;
            for(int i=0;i<6;++i)
            {
            hexa_cyl[i+1]=point(hexa_cyl[0],i)--point(hexa_cyl[0],(i+1)%6)--
            (shift(0,0,1)*point(hexa_cyl[0],(i+1)%6))--(shift(0,0,1)*point(hexa_cyl[0],i))--cycle;
            }
            hexa_cyl[6]=shift(0,0,1)*hexa_cyl[0];


            polyhedron p1={scale(1,1,3)*hexa_cyl};
            polyhedron p2={shift(4,1,1)*rotate(60,(2,1,3))*hexa_cyl};
            polyhedron p3={shift(-2,-2,-2)*rotate(90,(1,0,0))*scale(.5,.5,2)*hexa_cyl};

            filldraw(p1,new pen{0.8green},op=0.9);
            filldraw(p2,new pen{0.8blue},op=0.9);
            filldraw(p3,new pen{0.8yellow},op=0.9);


            and the result
            enter image description here






            share|improve this answer
























            • Oh wow! That's really stunning!

              – marmot
              1 min ago














            3












            3








            3







            Using Asymptote and the unofficial polyhedron_js asymptote package (available here https://github.com/pivaldi/asymptote-packages) you can define easily such a cylinder and play with it.
            Please find the code (assuming that you have polyhedron_js.asy)



            import polyhedron_js;

            // comment the following line for OpenGl
            //settings.render=0;

            settings.tex="pdflatex";
            settings.outformat="pdf"; // for opacity

            size(10cm);

            currentprojection=perspective(7,6,4); //if you want perspectivic look
            //currentprojection=orthographic(1,1,0.5); //if you want othographic look
            currentlight=(1,1,2);
            // currentlight=nolight;


            polyhedron hexa_cyl;
            guide hexa=polygon(6);
            hexa_cyl[0]=(point(hexa,0).x,point(hexa,0).y,0);
            for(int i=1;i<6;++i) hexa_cyl[0]=hexa_cyl[0]--(point(hexa,i).x,point(hexa,i).y,0);
            hexa_cyl[0]=hexa_cyl[0]--cycle;
            for(int i=0;i<6;++i)
            {
            hexa_cyl[i+1]=point(hexa_cyl[0],i)--point(hexa_cyl[0],(i+1)%6)--
            (shift(0,0,1)*point(hexa_cyl[0],(i+1)%6))--(shift(0,0,1)*point(hexa_cyl[0],i))--cycle;
            }
            hexa_cyl[6]=shift(0,0,1)*hexa_cyl[0];


            polyhedron p1={scale(1,1,3)*hexa_cyl};
            polyhedron p2={shift(4,1,1)*rotate(60,(2,1,3))*hexa_cyl};
            polyhedron p3={shift(-2,-2,-2)*rotate(90,(1,0,0))*scale(.5,.5,2)*hexa_cyl};

            filldraw(p1,new pen{0.8green},op=0.9);
            filldraw(p2,new pen{0.8blue},op=0.9);
            filldraw(p3,new pen{0.8yellow},op=0.9);


            and the result
            enter image description here






            share|improve this answer













            Using Asymptote and the unofficial polyhedron_js asymptote package (available here https://github.com/pivaldi/asymptote-packages) you can define easily such a cylinder and play with it.
            Please find the code (assuming that you have polyhedron_js.asy)



            import polyhedron_js;

            // comment the following line for OpenGl
            //settings.render=0;

            settings.tex="pdflatex";
            settings.outformat="pdf"; // for opacity

            size(10cm);

            currentprojection=perspective(7,6,4); //if you want perspectivic look
            //currentprojection=orthographic(1,1,0.5); //if you want othographic look
            currentlight=(1,1,2);
            // currentlight=nolight;


            polyhedron hexa_cyl;
            guide hexa=polygon(6);
            hexa_cyl[0]=(point(hexa,0).x,point(hexa,0).y,0);
            for(int i=1;i<6;++i) hexa_cyl[0]=hexa_cyl[0]--(point(hexa,i).x,point(hexa,i).y,0);
            hexa_cyl[0]=hexa_cyl[0]--cycle;
            for(int i=0;i<6;++i)
            {
            hexa_cyl[i+1]=point(hexa_cyl[0],i)--point(hexa_cyl[0],(i+1)%6)--
            (shift(0,0,1)*point(hexa_cyl[0],(i+1)%6))--(shift(0,0,1)*point(hexa_cyl[0],i))--cycle;
            }
            hexa_cyl[6]=shift(0,0,1)*hexa_cyl[0];


            polyhedron p1={scale(1,1,3)*hexa_cyl};
            polyhedron p2={shift(4,1,1)*rotate(60,(2,1,3))*hexa_cyl};
            polyhedron p3={shift(-2,-2,-2)*rotate(90,(1,0,0))*scale(.5,.5,2)*hexa_cyl};

            filldraw(p1,new pen{0.8green},op=0.9);
            filldraw(p2,new pen{0.8blue},op=0.9);
            filldraw(p3,new pen{0.8yellow},op=0.9);


            and the result
            enter image description here







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 7 hours ago









            O.G.O.G.

            1,85059




            1,85059













            • Oh wow! That's really stunning!

              – marmot
              1 min ago



















            • Oh wow! That's really stunning!

              – marmot
              1 min ago

















            Oh wow! That's really stunning!

            – marmot
            1 min ago





            Oh wow! That's really stunning!

            – marmot
            1 min ago


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f473044%2fdrawing-hexagonal-prisms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Accessing regular linux commands in Huawei's Dopra Linux

            Can't connect RFCOMM socket: Host is down

            Kernel panic - not syncing: Fatal Exception in Interrupt