Is there a command to find coordinates of projection of a point on a plane?
Let SABC
be a tetrahedron, SA = c
, AB = a
, AC = b
, SA
perpendicular to AB
, AB
perpendicular to AC
, and AC
perpendicular to SA
. I am trying to find the projection H
of the point A
on the plane SBC
. I tried with two ways.
Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)}))
.
Second way, We can prove that, H
is orthocentre of triangle SBC
, then I see at
Is there a command to find coordinates of projection of a point on a line in 3D?
documentclass[border=3mm,12pt,tikz]{standalone}
usepackage{fouriernc}
usepackage{tikz,tikz-3dplot}
usepackage{tkz-euclide}
usetkzobj{all}
usetikzlibrary{intersections,calc,backgrounds}
newcommandpgfmathsinandcos[3]{%
pgfmathsetmacro#1{sin(#3)}%
pgfmathsetmacro#2{cos(#3)}%
}
tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
and (#7,#8,#9)}{%
/utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
insert path={%
({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
}}
begin{document}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) --(H) ;
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
foreach point/position in {A/left,B/left,C/below,S/above,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
;
path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
coordinate (P)
[projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
coordinate (Q)
[projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
coordinate (R);
begin{scope}
draw [very thick] (S) -- (R);
draw [very thick, name path=B--Q] (B) -- (Q);
draw [very thick, name path=C--P] (C) -- (P);
path [name intersections={of=B--Q and C--P,by=H}];
end{scope}
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
tkzMarkRightAngle(S,R,C)
tkzMarkRightAngle(B,P,C)
tkzMarkRightAngle(B,Q,C)
tkzMarkRightAngle(A,R,B)
foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
end{document}
Is there a command to find coordinates of projection of a point on a plane?
tikz-pgf 3d tikz-3dplot
add a comment |
Let SABC
be a tetrahedron, SA = c
, AB = a
, AC = b
, SA
perpendicular to AB
, AB
perpendicular to AC
, and AC
perpendicular to SA
. I am trying to find the projection H
of the point A
on the plane SBC
. I tried with two ways.
Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)}))
.
Second way, We can prove that, H
is orthocentre of triangle SBC
, then I see at
Is there a command to find coordinates of projection of a point on a line in 3D?
documentclass[border=3mm,12pt,tikz]{standalone}
usepackage{fouriernc}
usepackage{tikz,tikz-3dplot}
usepackage{tkz-euclide}
usetkzobj{all}
usetikzlibrary{intersections,calc,backgrounds}
newcommandpgfmathsinandcos[3]{%
pgfmathsetmacro#1{sin(#3)}%
pgfmathsetmacro#2{cos(#3)}%
}
tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
and (#7,#8,#9)}{%
/utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
insert path={%
({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
}}
begin{document}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) --(H) ;
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
foreach point/position in {A/left,B/left,C/below,S/above,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
;
path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
coordinate (P)
[projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
coordinate (Q)
[projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
coordinate (R);
begin{scope}
draw [very thick] (S) -- (R);
draw [very thick, name path=B--Q] (B) -- (Q);
draw [very thick, name path=C--P] (C) -- (P);
path [name intersections={of=B--Q and C--P,by=H}];
end{scope}
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
tkzMarkRightAngle(S,R,C)
tkzMarkRightAngle(B,P,C)
tkzMarkRightAngle(B,Q,C)
tkzMarkRightAngle(A,R,B)
foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
end{document}
Is there a command to find coordinates of projection of a point on a plane?
tikz-pgf 3d tikz-3dplot
add a comment |
Let SABC
be a tetrahedron, SA = c
, AB = a
, AC = b
, SA
perpendicular to AB
, AB
perpendicular to AC
, and AC
perpendicular to SA
. I am trying to find the projection H
of the point A
on the plane SBC
. I tried with two ways.
Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)}))
.
Second way, We can prove that, H
is orthocentre of triangle SBC
, then I see at
Is there a command to find coordinates of projection of a point on a line in 3D?
documentclass[border=3mm,12pt,tikz]{standalone}
usepackage{fouriernc}
usepackage{tikz,tikz-3dplot}
usepackage{tkz-euclide}
usetkzobj{all}
usetikzlibrary{intersections,calc,backgrounds}
newcommandpgfmathsinandcos[3]{%
pgfmathsetmacro#1{sin(#3)}%
pgfmathsetmacro#2{cos(#3)}%
}
tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
and (#7,#8,#9)}{%
/utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
insert path={%
({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
}}
begin{document}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) --(H) ;
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
foreach point/position in {A/left,B/left,C/below,S/above,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
;
path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
coordinate (P)
[projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
coordinate (Q)
[projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
coordinate (R);
begin{scope}
draw [very thick] (S) -- (R);
draw [very thick, name path=B--Q] (B) -- (Q);
draw [very thick, name path=C--P] (C) -- (P);
path [name intersections={of=B--Q and C--P,by=H}];
end{scope}
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
tkzMarkRightAngle(S,R,C)
tkzMarkRightAngle(B,P,C)
tkzMarkRightAngle(B,Q,C)
tkzMarkRightAngle(A,R,B)
foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
end{document}
Is there a command to find coordinates of projection of a point on a plane?
tikz-pgf 3d tikz-3dplot
Let SABC
be a tetrahedron, SA = c
, AB = a
, AC = b
, SA
perpendicular to AB
, AB
perpendicular to AC
, and AC
perpendicular to SA
. I am trying to find the projection H
of the point A
on the plane SBC
. I tried with two ways.
Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)}))
.
Second way, We can prove that, H
is orthocentre of triangle SBC
, then I see at
Is there a command to find coordinates of projection of a point on a line in 3D?
documentclass[border=3mm,12pt,tikz]{standalone}
usepackage{fouriernc}
usepackage{tikz,tikz-3dplot}
usepackage{tkz-euclide}
usetkzobj{all}
usetikzlibrary{intersections,calc,backgrounds}
newcommandpgfmathsinandcos[3]{%
pgfmathsetmacro#1{sin(#3)}%
pgfmathsetmacro#2{cos(#3)}%
}
tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
and (#7,#8,#9)}{%
/utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
insert path={%
({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
}}
begin{document}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) --(H) ;
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
foreach point/position in {A/left,B/left,C/below,S/above,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
;
path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
coordinate (P)
[projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
coordinate (Q)
[projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
coordinate (R);
begin{scope}
draw [very thick] (S) -- (R);
draw [very thick, name path=B--Q] (B) -- (Q);
draw [very thick, name path=C--P] (C) -- (P);
path [name intersections={of=B--Q and C--P,by=H}];
end{scope}
begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
tkzMarkRightAngle(S,R,C)
tkzMarkRightAngle(B,P,C)
tkzMarkRightAngle(B,Q,C)
tkzMarkRightAngle(A,R,B)
foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
end{document}
Is there a command to find coordinates of projection of a point on a plane?
tikz-pgf 3d tikz-3dplot
tikz-pgf 3d tikz-3dplot
edited 19 mins ago
minhthien_2016
asked 25 mins ago
minhthien_2016minhthien_2016
1,163816
1,163816
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f471091%2fis-there-a-command-to-find-coordinates-of-projection-of-a-point-on-a-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f471091%2fis-there-a-command-to-find-coordinates-of-projection-of-a-point-on-a-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown