Reflecting a line and/or point with named coordinates
This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?
documentclass[tikz]{standalone}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
tikz-pgf
add a comment |
This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?
documentclass[tikz]{standalone}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
tikz-pgf
add a comment |
This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?
documentclass[tikz]{standalone}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
tikz-pgf
This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?
documentclass[tikz]{standalone}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
tikz-pgf
tikz-pgf
edited 19 mins ago
asked Dec 25 at 15:43
blackened
1,427714
1,427714
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc
.) The ordering indicates a ranking of these options.
First option: (ab)use show path construction
. (Problems: one has to cheat with the colors and also this is not one path but two of them.)
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
-- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B)--(A)--(C);
end{tikzpicture}
end{document}
(For fun: point reflections:
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{point reflect at/.style args={#1}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
-- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
(2,3) coordinate (D);
draw[blue] (B)--(A)--(C);
fill[red] (D) circle(1pt);
draw[blue,point reflect at=D] (B)--(A)--(C);
end{tikzpicture}
end{document}
)
Second option: Change the to
path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect at/.style args={#1--#2}{to path={%
($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
-- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
}}}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
end{tikzpicture}
end{document}
Third option: More core-level. (Problem: doesn't work with rescaling things.)
documentclass[tikz]{standalone}
makeatletter
tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
pgfutil@tempdima=pgf@x
pgfutil@tempdimb=pgf@y
pgfpointanchor{#1}{center}
pgf@xa=pgf@x
pgf@ya=pgf@y
pgfpointanchor{#2}{center}
pgf@xb=pgf@x
pgf@yb=pgf@y
pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
advancepgf@xb by-pgf@xa
advancepgf@yb by-pgf@ya
pgfutil@tempdima=tmptpgf@yb
pgfutil@tempdimb=-tmptpgf@xb
},
mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
yshift=pgfutil@tempdimb}}
makeatother
begin{document}
begin{tikzpicture}[scale=1]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
draw[blue] (B)--(A)--(C);
draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two B
s in ([reflect=B at D--E]B)
, and it does not work well with global transformations like scale=0.55
. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect/.style args={#1 at #2--#3}{shift={%
($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
}}}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
-- ([reflect=C at D--E]C);
end{tikzpicture}
end{document}
Side-remark: Paul Gaborit's solution seems to work.
documentclass[tikz]{standalone}
usetikzlibrary{spy,decorations.fractals}
tikzset{
mirror scope/.is family,
mirror scope/angle/.store in=mirrorangle,
mirror scope/center/.store in=mirrorcenter,
mirror setup/.code={tikzset{mirror scope/.cd,#1}},
mirror scope/.style={mirror setup={#1},spy scope={
rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
}
newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw [help lines] (0,0) grid (4,3);
begin{scope}[mirror scope={center={2,0},angle=90}]
draw[blue] (B) -- (A) -- (C);
draw[red] (D) -- (E);
mirror;
end{scope}
end{tikzpicture}
end{document}
@blackenedD
is the mirror center, and sinceE
is aboveD
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
– marmot
Dec 25 at 16:11
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look attikzoption
for that.)
– marmot
2 days ago
1
@blackened Updated.
– marmot
28 mins ago
I am deleting my comments.
– blackened
26 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
|
show 1 more comment
One possibility is using the tkz-euclide
package.
To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
documentclass[border=1cm,tikz]{standalone}
usepackage{tkz-euclide}
begin{document}
begin{tikzpicture}
draw[help lines,dashed](0,0)grid(4,4);
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate[label=E] (E) at (2,3);
tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw [green] (B1)--(A1)--(C1);
end{tikzpicture}
end{document}
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt]{standalone}
usepackage{pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,3)
pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
pstOrtSym{X}{Y}{A,B,C}[A',B',C']
psline[linecolor=blue](X)(Y)
psline[linecolor=red](A)(B)(C)
psline[linecolor=red](A')(B')(C')
endpspicture
end{document}
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f467295%2freflecting-a-line-and-or-point-with-named-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc
.) The ordering indicates a ranking of these options.
First option: (ab)use show path construction
. (Problems: one has to cheat with the colors and also this is not one path but two of them.)
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
-- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B)--(A)--(C);
end{tikzpicture}
end{document}
(For fun: point reflections:
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{point reflect at/.style args={#1}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
-- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
(2,3) coordinate (D);
draw[blue] (B)--(A)--(C);
fill[red] (D) circle(1pt);
draw[blue,point reflect at=D] (B)--(A)--(C);
end{tikzpicture}
end{document}
)
Second option: Change the to
path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect at/.style args={#1--#2}{to path={%
($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
-- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
}}}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
end{tikzpicture}
end{document}
Third option: More core-level. (Problem: doesn't work with rescaling things.)
documentclass[tikz]{standalone}
makeatletter
tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
pgfutil@tempdima=pgf@x
pgfutil@tempdimb=pgf@y
pgfpointanchor{#1}{center}
pgf@xa=pgf@x
pgf@ya=pgf@y
pgfpointanchor{#2}{center}
pgf@xb=pgf@x
pgf@yb=pgf@y
pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
advancepgf@xb by-pgf@xa
advancepgf@yb by-pgf@ya
pgfutil@tempdima=tmptpgf@yb
pgfutil@tempdimb=-tmptpgf@xb
},
mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
yshift=pgfutil@tempdimb}}
makeatother
begin{document}
begin{tikzpicture}[scale=1]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
draw[blue] (B)--(A)--(C);
draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two B
s in ([reflect=B at D--E]B)
, and it does not work well with global transformations like scale=0.55
. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect/.style args={#1 at #2--#3}{shift={%
($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
}}}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
-- ([reflect=C at D--E]C);
end{tikzpicture}
end{document}
Side-remark: Paul Gaborit's solution seems to work.
documentclass[tikz]{standalone}
usetikzlibrary{spy,decorations.fractals}
tikzset{
mirror scope/.is family,
mirror scope/angle/.store in=mirrorangle,
mirror scope/center/.store in=mirrorcenter,
mirror setup/.code={tikzset{mirror scope/.cd,#1}},
mirror scope/.style={mirror setup={#1},spy scope={
rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
}
newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw [help lines] (0,0) grid (4,3);
begin{scope}[mirror scope={center={2,0},angle=90}]
draw[blue] (B) -- (A) -- (C);
draw[red] (D) -- (E);
mirror;
end{scope}
end{tikzpicture}
end{document}
@blackenedD
is the mirror center, and sinceE
is aboveD
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
– marmot
Dec 25 at 16:11
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look attikzoption
for that.)
– marmot
2 days ago
1
@blackened Updated.
– marmot
28 mins ago
I am deleting my comments.
– blackened
26 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
|
show 1 more comment
This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc
.) The ordering indicates a ranking of these options.
First option: (ab)use show path construction
. (Problems: one has to cheat with the colors and also this is not one path but two of them.)
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
-- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B)--(A)--(C);
end{tikzpicture}
end{document}
(For fun: point reflections:
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{point reflect at/.style args={#1}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
-- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
(2,3) coordinate (D);
draw[blue] (B)--(A)--(C);
fill[red] (D) circle(1pt);
draw[blue,point reflect at=D] (B)--(A)--(C);
end{tikzpicture}
end{document}
)
Second option: Change the to
path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect at/.style args={#1--#2}{to path={%
($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
-- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
}}}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
end{tikzpicture}
end{document}
Third option: More core-level. (Problem: doesn't work with rescaling things.)
documentclass[tikz]{standalone}
makeatletter
tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
pgfutil@tempdima=pgf@x
pgfutil@tempdimb=pgf@y
pgfpointanchor{#1}{center}
pgf@xa=pgf@x
pgf@ya=pgf@y
pgfpointanchor{#2}{center}
pgf@xb=pgf@x
pgf@yb=pgf@y
pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
advancepgf@xb by-pgf@xa
advancepgf@yb by-pgf@ya
pgfutil@tempdima=tmptpgf@yb
pgfutil@tempdimb=-tmptpgf@xb
},
mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
yshift=pgfutil@tempdimb}}
makeatother
begin{document}
begin{tikzpicture}[scale=1]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
draw[blue] (B)--(A)--(C);
draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two B
s in ([reflect=B at D--E]B)
, and it does not work well with global transformations like scale=0.55
. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect/.style args={#1 at #2--#3}{shift={%
($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
}}}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
-- ([reflect=C at D--E]C);
end{tikzpicture}
end{document}
Side-remark: Paul Gaborit's solution seems to work.
documentclass[tikz]{standalone}
usetikzlibrary{spy,decorations.fractals}
tikzset{
mirror scope/.is family,
mirror scope/angle/.store in=mirrorangle,
mirror scope/center/.store in=mirrorcenter,
mirror setup/.code={tikzset{mirror scope/.cd,#1}},
mirror scope/.style={mirror setup={#1},spy scope={
rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
}
newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw [help lines] (0,0) grid (4,3);
begin{scope}[mirror scope={center={2,0},angle=90}]
draw[blue] (B) -- (A) -- (C);
draw[red] (D) -- (E);
mirror;
end{scope}
end{tikzpicture}
end{document}
@blackenedD
is the mirror center, and sinceE
is aboveD
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
– marmot
Dec 25 at 16:11
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look attikzoption
for that.)
– marmot
2 days ago
1
@blackened Updated.
– marmot
28 mins ago
I am deleting my comments.
– blackened
26 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
|
show 1 more comment
This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc
.) The ordering indicates a ranking of these options.
First option: (ab)use show path construction
. (Problems: one has to cheat with the colors and also this is not one path but two of them.)
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
-- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B)--(A)--(C);
end{tikzpicture}
end{document}
(For fun: point reflections:
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{point reflect at/.style args={#1}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
-- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
(2,3) coordinate (D);
draw[blue] (B)--(A)--(C);
fill[red] (D) circle(1pt);
draw[blue,point reflect at=D] (B)--(A)--(C);
end{tikzpicture}
end{document}
)
Second option: Change the to
path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect at/.style args={#1--#2}{to path={%
($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
-- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
}}}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
end{tikzpicture}
end{document}
Third option: More core-level. (Problem: doesn't work with rescaling things.)
documentclass[tikz]{standalone}
makeatletter
tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
pgfutil@tempdima=pgf@x
pgfutil@tempdimb=pgf@y
pgfpointanchor{#1}{center}
pgf@xa=pgf@x
pgf@ya=pgf@y
pgfpointanchor{#2}{center}
pgf@xb=pgf@x
pgf@yb=pgf@y
pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
advancepgf@xb by-pgf@xa
advancepgf@yb by-pgf@ya
pgfutil@tempdima=tmptpgf@yb
pgfutil@tempdimb=-tmptpgf@xb
},
mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
yshift=pgfutil@tempdimb}}
makeatother
begin{document}
begin{tikzpicture}[scale=1]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
draw[blue] (B)--(A)--(C);
draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two B
s in ([reflect=B at D--E]B)
, and it does not work well with global transformations like scale=0.55
. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect/.style args={#1 at #2--#3}{shift={%
($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
}}}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
-- ([reflect=C at D--E]C);
end{tikzpicture}
end{document}
Side-remark: Paul Gaborit's solution seems to work.
documentclass[tikz]{standalone}
usetikzlibrary{spy,decorations.fractals}
tikzset{
mirror scope/.is family,
mirror scope/angle/.store in=mirrorangle,
mirror scope/center/.store in=mirrorcenter,
mirror setup/.code={tikzset{mirror scope/.cd,#1}},
mirror scope/.style={mirror setup={#1},spy scope={
rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
}
newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw [help lines] (0,0) grid (4,3);
begin{scope}[mirror scope={center={2,0},angle=90}]
draw[blue] (B) -- (A) -- (C);
draw[red] (D) -- (E);
mirror;
end{scope}
end{tikzpicture}
end{document}
This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc
.) The ordering indicates a ranking of these options.
First option: (ab)use show path construction
. (Problems: one has to cheat with the colors and also this is not one path but two of them.)
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
-- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B)--(A)--(C);
end{tikzpicture}
end{document}
(For fun: point reflections:
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{decorations.pathreplacing,calc}
makeatletter
tikzset{point reflect at/.style args={#1}{decorate,decoration={
show path construction,
lineto code={draw[tikz@textcolor]
($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
-- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
makeatother
begin{document}
begin{tikzpicture}[scale=0.55]
path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
(2,3) coordinate (D);
draw[blue] (B)--(A)--(C);
fill[red] (D) circle(1pt);
draw[blue,point reflect at=D] (B)--(A)--(C);
end{tikzpicture}
end{document}
)
Second option: Change the to
path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect at/.style args={#1--#2}{to path={%
($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
-- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
}}}
begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
end{tikzpicture}
end{document}
Third option: More core-level. (Problem: doesn't work with rescaling things.)
documentclass[tikz]{standalone}
makeatletter
tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
pgfutil@tempdima=pgf@x
pgfutil@tempdimb=pgf@y
pgfpointanchor{#1}{center}
pgf@xa=pgf@x
pgf@ya=pgf@y
pgfpointanchor{#2}{center}
pgf@xb=pgf@x
pgf@yb=pgf@y
pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
advancepgf@xb by-pgf@xa
advancepgf@yb by-pgf@ya
pgfutil@tempdima=tmptpgf@yb
pgfutil@tempdimb=-tmptpgf@xb
},
mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
yshift=pgfutil@tempdimb}}
makeatother
begin{document}
begin{tikzpicture}[scale=1]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
draw[blue] (B)--(A)--(C);
draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}
Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two B
s in ([reflect=B at D--E]B)
, and it does not work well with global transformations like scale=0.55
. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)
documentclass[tikz]{standalone}
usetikzlibrary{calc}
tikzset{reflect/.style args={#1 at #2--#3}{shift={%
($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
}}}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
-- ([reflect=C at D--E]C);
end{tikzpicture}
end{document}
Side-remark: Paul Gaborit's solution seems to work.
documentclass[tikz]{standalone}
usetikzlibrary{spy,decorations.fractals}
tikzset{
mirror scope/.is family,
mirror scope/angle/.store in=mirrorangle,
mirror scope/center/.store in=mirrorcenter,
mirror setup/.code={tikzset{mirror scope/.cd,#1}},
mirror scope/.style={mirror setup={#1},spy scope={
rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
}
newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);
draw [help lines] (0,0) grid (4,3);
begin{scope}[mirror scope={center={2,0},angle=90}]
draw[blue] (B) -- (A) -- (C);
draw[red] (D) -- (E);
mirror;
end{scope}
end{tikzpicture}
end{document}
edited 24 mins ago
answered Dec 25 at 16:01
marmot
86.5k499184
86.5k499184
@blackenedD
is the mirror center, and sinceE
is aboveD
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
– marmot
Dec 25 at 16:11
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look attikzoption
for that.)
– marmot
2 days ago
1
@blackened Updated.
– marmot
28 mins ago
I am deleting my comments.
– blackened
26 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
|
show 1 more comment
@blackenedD
is the mirror center, and sinceE
is aboveD
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
– marmot
Dec 25 at 16:11
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look attikzoption
for that.)
– marmot
2 days ago
1
@blackened Updated.
– marmot
28 mins ago
I am deleting my comments.
– blackened
26 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
@blackened
D
is the mirror center, and since E
is above D
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).– marmot
Dec 25 at 16:11
@blackened
D
is the mirror center, and since E
is above D
, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).– marmot
Dec 25 at 16:11
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at
tikzoption
for that.)– marmot
2 days ago
@blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at
tikzoption
for that.)– marmot
2 days ago
1
1
@blackened Updated.
– marmot
28 mins ago
@blackened Updated.
– marmot
28 mins ago
I am deleting my comments.
– blackened
26 mins ago
I am deleting my comments.
– blackened
26 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
@blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
– marmot
23 mins ago
|
show 1 more comment
One possibility is using the tkz-euclide
package.
To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
documentclass[border=1cm,tikz]{standalone}
usepackage{tkz-euclide}
begin{document}
begin{tikzpicture}
draw[help lines,dashed](0,0)grid(4,4);
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate[label=E] (E) at (2,3);
tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw [green] (B1)--(A1)--(C1);
end{tikzpicture}
end{document}
add a comment |
One possibility is using the tkz-euclide
package.
To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
documentclass[border=1cm,tikz]{standalone}
usepackage{tkz-euclide}
begin{document}
begin{tikzpicture}
draw[help lines,dashed](0,0)grid(4,4);
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate[label=E] (E) at (2,3);
tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw [green] (B1)--(A1)--(C1);
end{tikzpicture}
end{document}
add a comment |
One possibility is using the tkz-euclide
package.
To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
documentclass[border=1cm,tikz]{standalone}
usepackage{tkz-euclide}
begin{document}
begin{tikzpicture}
draw[help lines,dashed](0,0)grid(4,4);
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate[label=E] (E) at (2,3);
tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw [green] (B1)--(A1)--(C1);
end{tikzpicture}
end{document}
One possibility is using the tkz-euclide
package.
To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
documentclass[border=1cm,tikz]{standalone}
usepackage{tkz-euclide}
begin{document}
begin{tikzpicture}
draw[help lines,dashed](0,0)grid(4,4);
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate[label=E] (E) at (2,3);
tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}
draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
draw [green] (B1)--(A1)--(C1);
end{tikzpicture}
end{document}
edited 2 days ago
answered 2 days ago
Hafid Boukhoulda
1,6141516
1,6141516
add a comment |
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt]{standalone}
usepackage{pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,3)
pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
pstOrtSym{X}{Y}{A,B,C}[A',B',C']
psline[linecolor=blue](X)(Y)
psline[linecolor=red](A)(B)(C)
psline[linecolor=red](A')(B')(C')
endpspicture
end{document}
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt]{standalone}
usepackage{pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,3)
pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
pstOrtSym{X}{Y}{A,B,C}[A',B',C']
psline[linecolor=blue](X)(Y)
psline[linecolor=red](A)(B)(C)
psline[linecolor=red](A')(B')(C')
endpspicture
end{document}
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt]{standalone}
usepackage{pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,3)
pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
pstOrtSym{X}{Y}{A,B,C}[A',B',C']
psline[linecolor=blue](X)(Y)
psline[linecolor=red](A)(B)(C)
psline[linecolor=red](A')(B')(C')
endpspicture
end{document}
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt]{standalone}
usepackage{pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,3)
pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
pstOrtSym{X}{Y}{A,B,C}[A',B',C']
psline[linecolor=blue](X)(Y)
psline[linecolor=red](A)(B)(C)
psline[linecolor=red](A')(B')(C')
endpspicture
end{document}
answered 2 days ago
God Must Be Crazy
5,54011039
5,54011039
add a comment |
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f467295%2freflecting-a-line-and-or-point-with-named-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown