A Difficult Definite Integral












3














Problem



Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



Comment



It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$




enter image description hereBut any other solution?










share|cite|improve this question



























    3














    Problem



    Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



    Comment



    It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




    $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
    where $f(x) in C[-1,1].$




    enter image description hereBut any other solution?










    share|cite|improve this question

























      3












      3








      3







      Problem



      Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



      Comment



      It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




      $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
      where $f(x) in C[-1,1].$




      enter image description hereBut any other solution?










      share|cite|improve this question













      Problem



      Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



      Comment



      It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




      $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
      where $f(x) in C[-1,1].$




      enter image description hereBut any other solution?







      definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      mengdie1982

      4,775618




      4,775618






















          3 Answers
          3






          active

          oldest

          votes


















          2














          Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
          $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
          Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
          begin{align}
          int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
          &= int_0^{2pi} xf(x),dx \
          &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
          &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
          end{align}



          Now recall the formula for the $x$-coordinate of the centroid:
          $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



          since centroid is clearly at $x = pi$ by symmetry.



          Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



          this integral being a lot easier than the original one.



          It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






          share|cite|improve this answer































            1














            The integral
            $$
            int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
            $$

            is immediate. Thus we can concentrate on
            $$
            int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
            16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
            $$

            For integer $a$, we have
            $$
            int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
            $$

            Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
            $$
            int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
            $$






            share|cite|improve this answer





























              0














              $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






              share|cite|improve this answer





















                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2














                Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                begin{align}
                int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                &= int_0^{2pi} xf(x),dx \
                &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                end{align}



                Now recall the formula for the $x$-coordinate of the centroid:
                $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                since centroid is clearly at $x = pi$ by symmetry.



                Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                this integral being a lot easier than the original one.



                It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                share|cite|improve this answer




























                  2














                  Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                  $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                  Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                  begin{align}
                  int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                  &= int_0^{2pi} xf(x),dx \
                  &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                  &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                  end{align}



                  Now recall the formula for the $x$-coordinate of the centroid:
                  $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                  since centroid is clearly at $x = pi$ by symmetry.



                  Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                  this integral being a lot easier than the original one.



                  It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                  share|cite|improve this answer


























                    2












                    2








                    2






                    Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                    $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                    Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                    begin{align}
                    int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                    &= int_0^{2pi} xf(x),dx \
                    &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                    &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                    end{align}



                    Now recall the formula for the $x$-coordinate of the centroid:
                    $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                    since centroid is clearly at $x = pi$ by symmetry.



                    Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                    this integral being a lot easier than the original one.



                    It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                    share|cite|improve this answer














                    Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                    $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                    Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                    begin{align}
                    int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                    &= int_0^{2pi} xf(x),dx \
                    &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                    &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                    end{align}



                    Now recall the formula for the $x$-coordinate of the centroid:
                    $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                    since centroid is clearly at $x = pi$ by symmetry.



                    Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                    this integral being a lot easier than the original one.



                    It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 1 hour ago

























                    answered 1 hour ago









                    mechanodroid

                    25.9k62245




                    25.9k62245























                        1














                        The integral
                        $$
                        int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                        $$

                        is immediate. Thus we can concentrate on
                        $$
                        int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                        16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                        $$

                        For integer $a$, we have
                        $$
                        int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                        $$

                        Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                        $$
                        int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                        $$






                        share|cite|improve this answer


























                          1














                          The integral
                          $$
                          int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                          $$

                          is immediate. Thus we can concentrate on
                          $$
                          int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                          16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                          $$

                          For integer $a$, we have
                          $$
                          int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                          $$

                          Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                          $$
                          int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                          $$






                          share|cite|improve this answer
























                            1












                            1








                            1






                            The integral
                            $$
                            int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                            $$

                            is immediate. Thus we can concentrate on
                            $$
                            int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                            16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                            $$

                            For integer $a$, we have
                            $$
                            int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                            $$

                            Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                            $$
                            int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                            $$






                            share|cite|improve this answer












                            The integral
                            $$
                            int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                            $$

                            is immediate. Thus we can concentrate on
                            $$
                            int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                            16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                            $$

                            For integer $a$, we have
                            $$
                            int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                            $$

                            Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                            $$
                            int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 39 mins ago









                            egreg

                            178k1484200




                            178k1484200























                                0














                                $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                                share|cite|improve this answer


























                                  0














                                  $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                                  share|cite|improve this answer
























                                    0












                                    0








                                    0






                                    $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                                    share|cite|improve this answer












                                    $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 2 hours ago









                                    yavar

                                    643




                                    643






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Accessing regular linux commands in Huawei's Dopra Linux

                                        Can't connect RFCOMM socket: Host is down

                                        Kernel panic - not syncing: Fatal Exception in Interrupt