Request for different proofs
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
gr.group-theory cv.complex-variables soft-question teaching elementary-proofs
add a comment |
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
gr.group-theory cv.complex-variables soft-question teaching elementary-proofs
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
6 hours ago
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
6 hours ago
2
can you change to a more specific title?
– YCor
4 hours ago
add a comment |
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
gr.group-theory cv.complex-variables soft-question teaching elementary-proofs
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
gr.group-theory cv.complex-variables soft-question teaching elementary-proofs
gr.group-theory cv.complex-variables soft-question teaching elementary-proofs
edited 6 hours ago
asked 6 hours ago
T. Amdeberhan
17k228126
17k228126
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
6 hours ago
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
6 hours ago
2
can you change to a more specific title?
– YCor
4 hours ago
add a comment |
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
6 hours ago
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
6 hours ago
2
can you change to a more specific title?
– YCor
4 hours ago
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
6 hours ago
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
6 hours ago
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
6 hours ago
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
6 hours ago
2
2
can you change to a more specific title?
– YCor
4 hours ago
can you change to a more specific title?
– YCor
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
add a comment |
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319620%2frequest-for-different-proofs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
add a comment |
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
add a comment |
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
answered 5 hours ago
Alexey Ustinov
6,68745778
6,68745778
add a comment |
add a comment |
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
add a comment |
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
add a comment |
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
answered 5 hours ago
community wiki
user44191
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319620%2frequest-for-different-proofs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
6 hours ago
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
6 hours ago
2
can you change to a more specific title?
– YCor
4 hours ago