What is the name of this chemical LiB2PO4H7?












1














I was recently looking at a chemical equation calculator that balances equations for you.



enter image description here



I came across a reaction that I am unsure about, it goes like this: B2H6 + LiH + PO4 = LiB2PO4H7.



I was researching the name of the product of this reaction for a while, but couldn't find a name for the chemical. I ask you guys this, if this chemical actually exists, what is the name of it?










share|improve this question









New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Let me know If you need any clarification for anything
    – Wither Fang136
    5 hours ago










  • Where did you find this reaction? It's very strange.
    – Nicolau Saker Neto
    4 hours ago










  • I found it on a balancing site.webqc.org/balance.php
    – Wither Fang136
    4 hours ago










  • I don't see the equation on the site. Do you mean you input the chemicals yourself into the calculator, and asked it to balance to see what comes out?
    – Nicolau Saker Neto
    4 hours ago










  • Yes, just input the equation and it seems to balance just fine.
    – Wither Fang136
    4 hours ago
















1














I was recently looking at a chemical equation calculator that balances equations for you.



enter image description here



I came across a reaction that I am unsure about, it goes like this: B2H6 + LiH + PO4 = LiB2PO4H7.



I was researching the name of the product of this reaction for a while, but couldn't find a name for the chemical. I ask you guys this, if this chemical actually exists, what is the name of it?










share|improve this question









New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Let me know If you need any clarification for anything
    – Wither Fang136
    5 hours ago










  • Where did you find this reaction? It's very strange.
    – Nicolau Saker Neto
    4 hours ago










  • I found it on a balancing site.webqc.org/balance.php
    – Wither Fang136
    4 hours ago










  • I don't see the equation on the site. Do you mean you input the chemicals yourself into the calculator, and asked it to balance to see what comes out?
    – Nicolau Saker Neto
    4 hours ago










  • Yes, just input the equation and it seems to balance just fine.
    – Wither Fang136
    4 hours ago














1












1








1


1





I was recently looking at a chemical equation calculator that balances equations for you.



enter image description here



I came across a reaction that I am unsure about, it goes like this: B2H6 + LiH + PO4 = LiB2PO4H7.



I was researching the name of the product of this reaction for a while, but couldn't find a name for the chemical. I ask you guys this, if this chemical actually exists, what is the name of it?










share|improve this question









New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I was recently looking at a chemical equation calculator that balances equations for you.



enter image description here



I came across a reaction that I am unsure about, it goes like this: B2H6 + LiH + PO4 = LiB2PO4H7.



I was researching the name of the product of this reaction for a while, but couldn't find a name for the chemical. I ask you guys this, if this chemical actually exists, what is the name of it?







inorganic-chemistry nomenclature identification






share|improve this question









New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 9 mins ago









andselisk

13.5k646100




13.5k646100






New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









Wither Fang136Wither Fang136

1063




1063




New contributor




Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Wither Fang136 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • Let me know If you need any clarification for anything
    – Wither Fang136
    5 hours ago










  • Where did you find this reaction? It's very strange.
    – Nicolau Saker Neto
    4 hours ago










  • I found it on a balancing site.webqc.org/balance.php
    – Wither Fang136
    4 hours ago










  • I don't see the equation on the site. Do you mean you input the chemicals yourself into the calculator, and asked it to balance to see what comes out?
    – Nicolau Saker Neto
    4 hours ago










  • Yes, just input the equation and it seems to balance just fine.
    – Wither Fang136
    4 hours ago


















  • Let me know If you need any clarification for anything
    – Wither Fang136
    5 hours ago










  • Where did you find this reaction? It's very strange.
    – Nicolau Saker Neto
    4 hours ago










  • I found it on a balancing site.webqc.org/balance.php
    – Wither Fang136
    4 hours ago










  • I don't see the equation on the site. Do you mean you input the chemicals yourself into the calculator, and asked it to balance to see what comes out?
    – Nicolau Saker Neto
    4 hours ago










  • Yes, just input the equation and it seems to balance just fine.
    – Wither Fang136
    4 hours ago
















Let me know If you need any clarification for anything
– Wither Fang136
5 hours ago




Let me know If you need any clarification for anything
– Wither Fang136
5 hours ago












Where did you find this reaction? It's very strange.
– Nicolau Saker Neto
4 hours ago




Where did you find this reaction? It's very strange.
– Nicolau Saker Neto
4 hours ago












I found it on a balancing site.webqc.org/balance.php
– Wither Fang136
4 hours ago




I found it on a balancing site.webqc.org/balance.php
– Wither Fang136
4 hours ago












I don't see the equation on the site. Do you mean you input the chemicals yourself into the calculator, and asked it to balance to see what comes out?
– Nicolau Saker Neto
4 hours ago




I don't see the equation on the site. Do you mean you input the chemicals yourself into the calculator, and asked it to balance to see what comes out?
– Nicolau Saker Neto
4 hours ago












Yes, just input the equation and it seems to balance just fine.
– Wither Fang136
4 hours ago




Yes, just input the equation and it seems to balance just fine.
– Wither Fang136
4 hours ago










4 Answers
4






active

oldest

votes


















3














There is an important concept to be understood underlying this question, something all new chemistry students eventually learn: all sensible chemical reactions will balance, but not all equations that balance make chemical sense.



Balancing is purely mathematical manipulation (solving a system of linear equations), and proper balancing is necessary but not sufficient to represent real chemistry.
As a simple example, $ce{200 H2 + O2 -> 2 H200O}$ balances just fine, but doesn't actually mean anything chemically. Here are a few more examples of proposed chemical reactions which balance correctly, but don't actually represent real chemistry due to more subtle arguments.



The crux of the problem is that it is very easy to write a program which can do mathematical balancing of chemical reactions, but it is exceptionally difficult to write a program which can tell in general whether the reaction actually happens! Chemists have spent the past several hundred years tabulating enormous amounts of information (e.g. physical chemistry) and making qualitative descriptions of chemical behaviour (e.g. atomic models, Lewis dot structures, etc.) so we can make this problem tractable after "getting a feel for it".



Okay, back to your reaction. In your particular case, things are made worse by the fact that one of your reagents, $ce{PO4}$, already doesn't exist in any reasonable conditions. Because this is such an unusual chemical, it's hard to predict exactly how it would react based on the rules-of-thumb we know, as most have been developed to understand more "normal" chemistry. What would most likely happen is that it would tear electrons out of just about anything, such as the hydride ions in $ce{LiH}$. The products could end up as a mixture of $ce{Li3PO4}$, $ce{LiBH4}$, $ce{H2}$ and possibly left over reagents, among others.



The closest chemically valid entity to $ce{PO4}$ is the phosphate anion $ce{PO4^3-}$. The calculator you used doesn't understand this by itself, so you would have to write "PO4{3-}" instead of "PO4" in the input field. If you had done this, since $ce{LiH}$ and $ce{B2H6}$ are true, neutral compounds, then any combination of all the above must have a negative charge too (conservation of charge). Nevertheless, I would still expect the online calculator to fail. My basic guess is that the most favourable outcome would be the formation of $ce{LiBH4}$, with other less important side-reactions.






share|improve this answer































    1














    The possible products of this reaction would be LiOH,H2O (side reaction) and LiBH4 (main product). so you should not think about LiB2PO4H.






    share|improve this answer








    New contributor




    Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.


























      1














      I've never stumbled upon a "balancing" website that would be checking the correctness of the reaction. This one doesn't even seem to correctly balance the reaction (1 H on the left and 7 H on the right) and doesn't take oxidation state of any element into account as the charges are not balanced either (-3 from $ce{PO4^3-}$ on the left and -1 from $ce{LiB2PO4H7^-}$ on the right).



      Also, as it's been already ruled out in other answer, these precursors would unlikely result in any borophosphates. However, there is at least one compound characterized that consists of $ce{H,Li,B,O,P}$ only:





      • $ce{Li[B3PO6(OH)3]}$, catena-[monoboro-mono-dihydrogendiboratemonohydrogenphosphate]. Hydrothermal synthesis from $ce{LiOH · 2 H2O}$, $ce{P2O5}$ and $ce{B2O3}$, conc. solution in $ce{HCl}$ at $433~mathrm{K}$ [1].


      There is also a few dozens of lithium borophosphates with addenda metals, to name a few:





      • $ce{LiCd(H2O)2[BP2O8] · H2O}$, lithium cadmium diaqua catena-[monoborodiphosphate]- monohydrate. Hydrothermal synthesis from $ce{CdCl2 · 2.5 H2O}$, $ce{LiOH}$, $ce{H3BO3}$ and $85%$ $ce{H3PO4}$ in deionized water at $443~mathrm{K}$ [2].


      • $ce{Li3V2[BP3O12(OH)][HPO4]}$, trilithium divanadium(III) borophosphate hydrogenphosphate. Hydrothermal synthesis from $ce{H3BO3}$, $ce{VCl3}$, $ce{LiH2PO4}$, $ce{LiCl}$ in deionized water at $553~mathrm{K}$ [3].


      • $ce{LiCu2[BP2O8(OH)2]}$, lithium dicopper hihydroxoboro-bis(phosphate(V)). Hydrothermal synthesis from $ce{H3BO3}$, $ce{Cu(OAc)2·H2O}$, $ce{LiH2PO4}$ in deionized water at $473~mathrm{K}$ [4].


      As you can see, all methods use less volatile precursors and hydrothermal conditions. Feel free to practice with writing and balancing chemical reactions for these real syntheses.



      References




      1. Hauf, C.; Kniep, R. Crystal Structure of Lithium Catena-[Monoboro-Mono-Dihydrogendiboratemonohydrogenphosphate), $ce{Li[B3PO6(OH)3]}$. Zeitschrift für Kristallographie - New Crystal Structures 1997, 212 (1), 313–314. https://doi.org/10.1524/ncrs.1997.212.1.313. (Open Access)

      2. Ge, M.-H.; Mi, J.-X.; Huangm, Y.-X.; Zhao, J.-T.; Kniep, R. Crystal Structure of Lithium Cadmium Diaqua Catena-[Monoborodiphosphate]- Monohydrate, $ce{LiCd(H2O)2[BP2O8] · H2O}$. Zeitschrift für Kristallographie - New Crystal Structures 2003, 218 (JG), 295–296. https://doi.org/10.1524/ncrs.2003.218.jg.295. (Open Access)

      3. Lin, Z.-S.; Hoffmann, S.; Huang, Y.-X.; Prots, Y.; Zhao, J.-T.; Kniep, R. Crystal Structure of Trilithium Divanadium(III) Borophosphate Hydrogenphosphate, $ce{Li3V2[BP3O12(OH)][HPO4]}$. Zeitschrift für Kristallographie - New Crystal Structures 2014, 225 (1), 3–4. https://doi.org/10.1524/ncrs.2010.0002. (Open Access)

      4. Yang, M.; Li, X.; Yu, J.; Zhu, J.; Liu, X.; Chen, G.; Yan, Y. $ce{LiCu2[BP2O8(OH)2]}$: A Chiral Open-Framework Copper Borophosphate via Spontaneous Asymmetrical Crystallization. Dalton Trans. 2013, 42 (18), 6298–6301. https://doi.org/10.1039/C3DT50591J.






      share|improve this answer





























        0














        This ion is most likely not the correct product, like the answers say, especially since it is not. However, IUPAC has methods on how to name compounds like these. Take a look at this page in the IUPAC red book.



        However, if you were to just name the compound, ignoring the fact that its charge does not balance, you would get something along the lines of:



        Lithium diboron phosphate heptahydride.






        share|improve this answer





















          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "431"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Wither Fang136 is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f107629%2fwhat-is-the-name-of-this-chemical-lib2po4h7%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          There is an important concept to be understood underlying this question, something all new chemistry students eventually learn: all sensible chemical reactions will balance, but not all equations that balance make chemical sense.



          Balancing is purely mathematical manipulation (solving a system of linear equations), and proper balancing is necessary but not sufficient to represent real chemistry.
          As a simple example, $ce{200 H2 + O2 -> 2 H200O}$ balances just fine, but doesn't actually mean anything chemically. Here are a few more examples of proposed chemical reactions which balance correctly, but don't actually represent real chemistry due to more subtle arguments.



          The crux of the problem is that it is very easy to write a program which can do mathematical balancing of chemical reactions, but it is exceptionally difficult to write a program which can tell in general whether the reaction actually happens! Chemists have spent the past several hundred years tabulating enormous amounts of information (e.g. physical chemistry) and making qualitative descriptions of chemical behaviour (e.g. atomic models, Lewis dot structures, etc.) so we can make this problem tractable after "getting a feel for it".



          Okay, back to your reaction. In your particular case, things are made worse by the fact that one of your reagents, $ce{PO4}$, already doesn't exist in any reasonable conditions. Because this is such an unusual chemical, it's hard to predict exactly how it would react based on the rules-of-thumb we know, as most have been developed to understand more "normal" chemistry. What would most likely happen is that it would tear electrons out of just about anything, such as the hydride ions in $ce{LiH}$. The products could end up as a mixture of $ce{Li3PO4}$, $ce{LiBH4}$, $ce{H2}$ and possibly left over reagents, among others.



          The closest chemically valid entity to $ce{PO4}$ is the phosphate anion $ce{PO4^3-}$. The calculator you used doesn't understand this by itself, so you would have to write "PO4{3-}" instead of "PO4" in the input field. If you had done this, since $ce{LiH}$ and $ce{B2H6}$ are true, neutral compounds, then any combination of all the above must have a negative charge too (conservation of charge). Nevertheless, I would still expect the online calculator to fail. My basic guess is that the most favourable outcome would be the formation of $ce{LiBH4}$, with other less important side-reactions.






          share|improve this answer




























            3














            There is an important concept to be understood underlying this question, something all new chemistry students eventually learn: all sensible chemical reactions will balance, but not all equations that balance make chemical sense.



            Balancing is purely mathematical manipulation (solving a system of linear equations), and proper balancing is necessary but not sufficient to represent real chemistry.
            As a simple example, $ce{200 H2 + O2 -> 2 H200O}$ balances just fine, but doesn't actually mean anything chemically. Here are a few more examples of proposed chemical reactions which balance correctly, but don't actually represent real chemistry due to more subtle arguments.



            The crux of the problem is that it is very easy to write a program which can do mathematical balancing of chemical reactions, but it is exceptionally difficult to write a program which can tell in general whether the reaction actually happens! Chemists have spent the past several hundred years tabulating enormous amounts of information (e.g. physical chemistry) and making qualitative descriptions of chemical behaviour (e.g. atomic models, Lewis dot structures, etc.) so we can make this problem tractable after "getting a feel for it".



            Okay, back to your reaction. In your particular case, things are made worse by the fact that one of your reagents, $ce{PO4}$, already doesn't exist in any reasonable conditions. Because this is such an unusual chemical, it's hard to predict exactly how it would react based on the rules-of-thumb we know, as most have been developed to understand more "normal" chemistry. What would most likely happen is that it would tear electrons out of just about anything, such as the hydride ions in $ce{LiH}$. The products could end up as a mixture of $ce{Li3PO4}$, $ce{LiBH4}$, $ce{H2}$ and possibly left over reagents, among others.



            The closest chemically valid entity to $ce{PO4}$ is the phosphate anion $ce{PO4^3-}$. The calculator you used doesn't understand this by itself, so you would have to write "PO4{3-}" instead of "PO4" in the input field. If you had done this, since $ce{LiH}$ and $ce{B2H6}$ are true, neutral compounds, then any combination of all the above must have a negative charge too (conservation of charge). Nevertheless, I would still expect the online calculator to fail. My basic guess is that the most favourable outcome would be the formation of $ce{LiBH4}$, with other less important side-reactions.






            share|improve this answer


























              3












              3








              3






              There is an important concept to be understood underlying this question, something all new chemistry students eventually learn: all sensible chemical reactions will balance, but not all equations that balance make chemical sense.



              Balancing is purely mathematical manipulation (solving a system of linear equations), and proper balancing is necessary but not sufficient to represent real chemistry.
              As a simple example, $ce{200 H2 + O2 -> 2 H200O}$ balances just fine, but doesn't actually mean anything chemically. Here are a few more examples of proposed chemical reactions which balance correctly, but don't actually represent real chemistry due to more subtle arguments.



              The crux of the problem is that it is very easy to write a program which can do mathematical balancing of chemical reactions, but it is exceptionally difficult to write a program which can tell in general whether the reaction actually happens! Chemists have spent the past several hundred years tabulating enormous amounts of information (e.g. physical chemistry) and making qualitative descriptions of chemical behaviour (e.g. atomic models, Lewis dot structures, etc.) so we can make this problem tractable after "getting a feel for it".



              Okay, back to your reaction. In your particular case, things are made worse by the fact that one of your reagents, $ce{PO4}$, already doesn't exist in any reasonable conditions. Because this is such an unusual chemical, it's hard to predict exactly how it would react based on the rules-of-thumb we know, as most have been developed to understand more "normal" chemistry. What would most likely happen is that it would tear electrons out of just about anything, such as the hydride ions in $ce{LiH}$. The products could end up as a mixture of $ce{Li3PO4}$, $ce{LiBH4}$, $ce{H2}$ and possibly left over reagents, among others.



              The closest chemically valid entity to $ce{PO4}$ is the phosphate anion $ce{PO4^3-}$. The calculator you used doesn't understand this by itself, so you would have to write "PO4{3-}" instead of "PO4" in the input field. If you had done this, since $ce{LiH}$ and $ce{B2H6}$ are true, neutral compounds, then any combination of all the above must have a negative charge too (conservation of charge). Nevertheless, I would still expect the online calculator to fail. My basic guess is that the most favourable outcome would be the formation of $ce{LiBH4}$, with other less important side-reactions.






              share|improve this answer














              There is an important concept to be understood underlying this question, something all new chemistry students eventually learn: all sensible chemical reactions will balance, but not all equations that balance make chemical sense.



              Balancing is purely mathematical manipulation (solving a system of linear equations), and proper balancing is necessary but not sufficient to represent real chemistry.
              As a simple example, $ce{200 H2 + O2 -> 2 H200O}$ balances just fine, but doesn't actually mean anything chemically. Here are a few more examples of proposed chemical reactions which balance correctly, but don't actually represent real chemistry due to more subtle arguments.



              The crux of the problem is that it is very easy to write a program which can do mathematical balancing of chemical reactions, but it is exceptionally difficult to write a program which can tell in general whether the reaction actually happens! Chemists have spent the past several hundred years tabulating enormous amounts of information (e.g. physical chemistry) and making qualitative descriptions of chemical behaviour (e.g. atomic models, Lewis dot structures, etc.) so we can make this problem tractable after "getting a feel for it".



              Okay, back to your reaction. In your particular case, things are made worse by the fact that one of your reagents, $ce{PO4}$, already doesn't exist in any reasonable conditions. Because this is such an unusual chemical, it's hard to predict exactly how it would react based on the rules-of-thumb we know, as most have been developed to understand more "normal" chemistry. What would most likely happen is that it would tear electrons out of just about anything, such as the hydride ions in $ce{LiH}$. The products could end up as a mixture of $ce{Li3PO4}$, $ce{LiBH4}$, $ce{H2}$ and possibly left over reagents, among others.



              The closest chemically valid entity to $ce{PO4}$ is the phosphate anion $ce{PO4^3-}$. The calculator you used doesn't understand this by itself, so you would have to write "PO4{3-}" instead of "PO4" in the input field. If you had done this, since $ce{LiH}$ and $ce{B2H6}$ are true, neutral compounds, then any combination of all the above must have a negative charge too (conservation of charge). Nevertheless, I would still expect the online calculator to fail. My basic guess is that the most favourable outcome would be the formation of $ce{LiBH4}$, with other less important side-reactions.







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited 3 hours ago

























              answered 3 hours ago









              Nicolau Saker NetoNicolau Saker Neto

              18.4k35390




              18.4k35390























                  1














                  The possible products of this reaction would be LiOH,H2O (side reaction) and LiBH4 (main product). so you should not think about LiB2PO4H.






                  share|improve this answer








                  New contributor




                  Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.























                    1














                    The possible products of this reaction would be LiOH,H2O (side reaction) and LiBH4 (main product). so you should not think about LiB2PO4H.






                    share|improve this answer








                    New contributor




                    Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





















                      1












                      1








                      1






                      The possible products of this reaction would be LiOH,H2O (side reaction) and LiBH4 (main product). so you should not think about LiB2PO4H.






                      share|improve this answer








                      New contributor




                      Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.









                      The possible products of this reaction would be LiOH,H2O (side reaction) and LiBH4 (main product). so you should not think about LiB2PO4H.







                      share|improve this answer








                      New contributor




                      Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.









                      share|improve this answer



                      share|improve this answer






                      New contributor




                      Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.









                      answered 2 hours ago









                      Numan AhmedNuman Ahmed

                      114




                      114




                      New contributor




                      Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.





                      New contributor





                      Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      Numan Ahmed is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.























                          1














                          I've never stumbled upon a "balancing" website that would be checking the correctness of the reaction. This one doesn't even seem to correctly balance the reaction (1 H on the left and 7 H on the right) and doesn't take oxidation state of any element into account as the charges are not balanced either (-3 from $ce{PO4^3-}$ on the left and -1 from $ce{LiB2PO4H7^-}$ on the right).



                          Also, as it's been already ruled out in other answer, these precursors would unlikely result in any borophosphates. However, there is at least one compound characterized that consists of $ce{H,Li,B,O,P}$ only:





                          • $ce{Li[B3PO6(OH)3]}$, catena-[monoboro-mono-dihydrogendiboratemonohydrogenphosphate]. Hydrothermal synthesis from $ce{LiOH · 2 H2O}$, $ce{P2O5}$ and $ce{B2O3}$, conc. solution in $ce{HCl}$ at $433~mathrm{K}$ [1].


                          There is also a few dozens of lithium borophosphates with addenda metals, to name a few:





                          • $ce{LiCd(H2O)2[BP2O8] · H2O}$, lithium cadmium diaqua catena-[monoborodiphosphate]- monohydrate. Hydrothermal synthesis from $ce{CdCl2 · 2.5 H2O}$, $ce{LiOH}$, $ce{H3BO3}$ and $85%$ $ce{H3PO4}$ in deionized water at $443~mathrm{K}$ [2].


                          • $ce{Li3V2[BP3O12(OH)][HPO4]}$, trilithium divanadium(III) borophosphate hydrogenphosphate. Hydrothermal synthesis from $ce{H3BO3}$, $ce{VCl3}$, $ce{LiH2PO4}$, $ce{LiCl}$ in deionized water at $553~mathrm{K}$ [3].


                          • $ce{LiCu2[BP2O8(OH)2]}$, lithium dicopper hihydroxoboro-bis(phosphate(V)). Hydrothermal synthesis from $ce{H3BO3}$, $ce{Cu(OAc)2·H2O}$, $ce{LiH2PO4}$ in deionized water at $473~mathrm{K}$ [4].


                          As you can see, all methods use less volatile precursors and hydrothermal conditions. Feel free to practice with writing and balancing chemical reactions for these real syntheses.



                          References




                          1. Hauf, C.; Kniep, R. Crystal Structure of Lithium Catena-[Monoboro-Mono-Dihydrogendiboratemonohydrogenphosphate), $ce{Li[B3PO6(OH)3]}$. Zeitschrift für Kristallographie - New Crystal Structures 1997, 212 (1), 313–314. https://doi.org/10.1524/ncrs.1997.212.1.313. (Open Access)

                          2. Ge, M.-H.; Mi, J.-X.; Huangm, Y.-X.; Zhao, J.-T.; Kniep, R. Crystal Structure of Lithium Cadmium Diaqua Catena-[Monoborodiphosphate]- Monohydrate, $ce{LiCd(H2O)2[BP2O8] · H2O}$. Zeitschrift für Kristallographie - New Crystal Structures 2003, 218 (JG), 295–296. https://doi.org/10.1524/ncrs.2003.218.jg.295. (Open Access)

                          3. Lin, Z.-S.; Hoffmann, S.; Huang, Y.-X.; Prots, Y.; Zhao, J.-T.; Kniep, R. Crystal Structure of Trilithium Divanadium(III) Borophosphate Hydrogenphosphate, $ce{Li3V2[BP3O12(OH)][HPO4]}$. Zeitschrift für Kristallographie - New Crystal Structures 2014, 225 (1), 3–4. https://doi.org/10.1524/ncrs.2010.0002. (Open Access)

                          4. Yang, M.; Li, X.; Yu, J.; Zhu, J.; Liu, X.; Chen, G.; Yan, Y. $ce{LiCu2[BP2O8(OH)2]}$: A Chiral Open-Framework Copper Borophosphate via Spontaneous Asymmetrical Crystallization. Dalton Trans. 2013, 42 (18), 6298–6301. https://doi.org/10.1039/C3DT50591J.






                          share|improve this answer


























                            1














                            I've never stumbled upon a "balancing" website that would be checking the correctness of the reaction. This one doesn't even seem to correctly balance the reaction (1 H on the left and 7 H on the right) and doesn't take oxidation state of any element into account as the charges are not balanced either (-3 from $ce{PO4^3-}$ on the left and -1 from $ce{LiB2PO4H7^-}$ on the right).



                            Also, as it's been already ruled out in other answer, these precursors would unlikely result in any borophosphates. However, there is at least one compound characterized that consists of $ce{H,Li,B,O,P}$ only:





                            • $ce{Li[B3PO6(OH)3]}$, catena-[monoboro-mono-dihydrogendiboratemonohydrogenphosphate]. Hydrothermal synthesis from $ce{LiOH · 2 H2O}$, $ce{P2O5}$ and $ce{B2O3}$, conc. solution in $ce{HCl}$ at $433~mathrm{K}$ [1].


                            There is also a few dozens of lithium borophosphates with addenda metals, to name a few:





                            • $ce{LiCd(H2O)2[BP2O8] · H2O}$, lithium cadmium diaqua catena-[monoborodiphosphate]- monohydrate. Hydrothermal synthesis from $ce{CdCl2 · 2.5 H2O}$, $ce{LiOH}$, $ce{H3BO3}$ and $85%$ $ce{H3PO4}$ in deionized water at $443~mathrm{K}$ [2].


                            • $ce{Li3V2[BP3O12(OH)][HPO4]}$, trilithium divanadium(III) borophosphate hydrogenphosphate. Hydrothermal synthesis from $ce{H3BO3}$, $ce{VCl3}$, $ce{LiH2PO4}$, $ce{LiCl}$ in deionized water at $553~mathrm{K}$ [3].


                            • $ce{LiCu2[BP2O8(OH)2]}$, lithium dicopper hihydroxoboro-bis(phosphate(V)). Hydrothermal synthesis from $ce{H3BO3}$, $ce{Cu(OAc)2·H2O}$, $ce{LiH2PO4}$ in deionized water at $473~mathrm{K}$ [4].


                            As you can see, all methods use less volatile precursors and hydrothermal conditions. Feel free to practice with writing and balancing chemical reactions for these real syntheses.



                            References




                            1. Hauf, C.; Kniep, R. Crystal Structure of Lithium Catena-[Monoboro-Mono-Dihydrogendiboratemonohydrogenphosphate), $ce{Li[B3PO6(OH)3]}$. Zeitschrift für Kristallographie - New Crystal Structures 1997, 212 (1), 313–314. https://doi.org/10.1524/ncrs.1997.212.1.313. (Open Access)

                            2. Ge, M.-H.; Mi, J.-X.; Huangm, Y.-X.; Zhao, J.-T.; Kniep, R. Crystal Structure of Lithium Cadmium Diaqua Catena-[Monoborodiphosphate]- Monohydrate, $ce{LiCd(H2O)2[BP2O8] · H2O}$. Zeitschrift für Kristallographie - New Crystal Structures 2003, 218 (JG), 295–296. https://doi.org/10.1524/ncrs.2003.218.jg.295. (Open Access)

                            3. Lin, Z.-S.; Hoffmann, S.; Huang, Y.-X.; Prots, Y.; Zhao, J.-T.; Kniep, R. Crystal Structure of Trilithium Divanadium(III) Borophosphate Hydrogenphosphate, $ce{Li3V2[BP3O12(OH)][HPO4]}$. Zeitschrift für Kristallographie - New Crystal Structures 2014, 225 (1), 3–4. https://doi.org/10.1524/ncrs.2010.0002. (Open Access)

                            4. Yang, M.; Li, X.; Yu, J.; Zhu, J.; Liu, X.; Chen, G.; Yan, Y. $ce{LiCu2[BP2O8(OH)2]}$: A Chiral Open-Framework Copper Borophosphate via Spontaneous Asymmetrical Crystallization. Dalton Trans. 2013, 42 (18), 6298–6301. https://doi.org/10.1039/C3DT50591J.






                            share|improve this answer
























                              1












                              1








                              1






                              I've never stumbled upon a "balancing" website that would be checking the correctness of the reaction. This one doesn't even seem to correctly balance the reaction (1 H on the left and 7 H on the right) and doesn't take oxidation state of any element into account as the charges are not balanced either (-3 from $ce{PO4^3-}$ on the left and -1 from $ce{LiB2PO4H7^-}$ on the right).



                              Also, as it's been already ruled out in other answer, these precursors would unlikely result in any borophosphates. However, there is at least one compound characterized that consists of $ce{H,Li,B,O,P}$ only:





                              • $ce{Li[B3PO6(OH)3]}$, catena-[monoboro-mono-dihydrogendiboratemonohydrogenphosphate]. Hydrothermal synthesis from $ce{LiOH · 2 H2O}$, $ce{P2O5}$ and $ce{B2O3}$, conc. solution in $ce{HCl}$ at $433~mathrm{K}$ [1].


                              There is also a few dozens of lithium borophosphates with addenda metals, to name a few:





                              • $ce{LiCd(H2O)2[BP2O8] · H2O}$, lithium cadmium diaqua catena-[monoborodiphosphate]- monohydrate. Hydrothermal synthesis from $ce{CdCl2 · 2.5 H2O}$, $ce{LiOH}$, $ce{H3BO3}$ and $85%$ $ce{H3PO4}$ in deionized water at $443~mathrm{K}$ [2].


                              • $ce{Li3V2[BP3O12(OH)][HPO4]}$, trilithium divanadium(III) borophosphate hydrogenphosphate. Hydrothermal synthesis from $ce{H3BO3}$, $ce{VCl3}$, $ce{LiH2PO4}$, $ce{LiCl}$ in deionized water at $553~mathrm{K}$ [3].


                              • $ce{LiCu2[BP2O8(OH)2]}$, lithium dicopper hihydroxoboro-bis(phosphate(V)). Hydrothermal synthesis from $ce{H3BO3}$, $ce{Cu(OAc)2·H2O}$, $ce{LiH2PO4}$ in deionized water at $473~mathrm{K}$ [4].


                              As you can see, all methods use less volatile precursors and hydrothermal conditions. Feel free to practice with writing and balancing chemical reactions for these real syntheses.



                              References




                              1. Hauf, C.; Kniep, R. Crystal Structure of Lithium Catena-[Monoboro-Mono-Dihydrogendiboratemonohydrogenphosphate), $ce{Li[B3PO6(OH)3]}$. Zeitschrift für Kristallographie - New Crystal Structures 1997, 212 (1), 313–314. https://doi.org/10.1524/ncrs.1997.212.1.313. (Open Access)

                              2. Ge, M.-H.; Mi, J.-X.; Huangm, Y.-X.; Zhao, J.-T.; Kniep, R. Crystal Structure of Lithium Cadmium Diaqua Catena-[Monoborodiphosphate]- Monohydrate, $ce{LiCd(H2O)2[BP2O8] · H2O}$. Zeitschrift für Kristallographie - New Crystal Structures 2003, 218 (JG), 295–296. https://doi.org/10.1524/ncrs.2003.218.jg.295. (Open Access)

                              3. Lin, Z.-S.; Hoffmann, S.; Huang, Y.-X.; Prots, Y.; Zhao, J.-T.; Kniep, R. Crystal Structure of Trilithium Divanadium(III) Borophosphate Hydrogenphosphate, $ce{Li3V2[BP3O12(OH)][HPO4]}$. Zeitschrift für Kristallographie - New Crystal Structures 2014, 225 (1), 3–4. https://doi.org/10.1524/ncrs.2010.0002. (Open Access)

                              4. Yang, M.; Li, X.; Yu, J.; Zhu, J.; Liu, X.; Chen, G.; Yan, Y. $ce{LiCu2[BP2O8(OH)2]}$: A Chiral Open-Framework Copper Borophosphate via Spontaneous Asymmetrical Crystallization. Dalton Trans. 2013, 42 (18), 6298–6301. https://doi.org/10.1039/C3DT50591J.






                              share|improve this answer












                              I've never stumbled upon a "balancing" website that would be checking the correctness of the reaction. This one doesn't even seem to correctly balance the reaction (1 H on the left and 7 H on the right) and doesn't take oxidation state of any element into account as the charges are not balanced either (-3 from $ce{PO4^3-}$ on the left and -1 from $ce{LiB2PO4H7^-}$ on the right).



                              Also, as it's been already ruled out in other answer, these precursors would unlikely result in any borophosphates. However, there is at least one compound characterized that consists of $ce{H,Li,B,O,P}$ only:





                              • $ce{Li[B3PO6(OH)3]}$, catena-[monoboro-mono-dihydrogendiboratemonohydrogenphosphate]. Hydrothermal synthesis from $ce{LiOH · 2 H2O}$, $ce{P2O5}$ and $ce{B2O3}$, conc. solution in $ce{HCl}$ at $433~mathrm{K}$ [1].


                              There is also a few dozens of lithium borophosphates with addenda metals, to name a few:





                              • $ce{LiCd(H2O)2[BP2O8] · H2O}$, lithium cadmium diaqua catena-[monoborodiphosphate]- monohydrate. Hydrothermal synthesis from $ce{CdCl2 · 2.5 H2O}$, $ce{LiOH}$, $ce{H3BO3}$ and $85%$ $ce{H3PO4}$ in deionized water at $443~mathrm{K}$ [2].


                              • $ce{Li3V2[BP3O12(OH)][HPO4]}$, trilithium divanadium(III) borophosphate hydrogenphosphate. Hydrothermal synthesis from $ce{H3BO3}$, $ce{VCl3}$, $ce{LiH2PO4}$, $ce{LiCl}$ in deionized water at $553~mathrm{K}$ [3].


                              • $ce{LiCu2[BP2O8(OH)2]}$, lithium dicopper hihydroxoboro-bis(phosphate(V)). Hydrothermal synthesis from $ce{H3BO3}$, $ce{Cu(OAc)2·H2O}$, $ce{LiH2PO4}$ in deionized water at $473~mathrm{K}$ [4].


                              As you can see, all methods use less volatile precursors and hydrothermal conditions. Feel free to practice with writing and balancing chemical reactions for these real syntheses.



                              References




                              1. Hauf, C.; Kniep, R. Crystal Structure of Lithium Catena-[Monoboro-Mono-Dihydrogendiboratemonohydrogenphosphate), $ce{Li[B3PO6(OH)3]}$. Zeitschrift für Kristallographie - New Crystal Structures 1997, 212 (1), 313–314. https://doi.org/10.1524/ncrs.1997.212.1.313. (Open Access)

                              2. Ge, M.-H.; Mi, J.-X.; Huangm, Y.-X.; Zhao, J.-T.; Kniep, R. Crystal Structure of Lithium Cadmium Diaqua Catena-[Monoborodiphosphate]- Monohydrate, $ce{LiCd(H2O)2[BP2O8] · H2O}$. Zeitschrift für Kristallographie - New Crystal Structures 2003, 218 (JG), 295–296. https://doi.org/10.1524/ncrs.2003.218.jg.295. (Open Access)

                              3. Lin, Z.-S.; Hoffmann, S.; Huang, Y.-X.; Prots, Y.; Zhao, J.-T.; Kniep, R. Crystal Structure of Trilithium Divanadium(III) Borophosphate Hydrogenphosphate, $ce{Li3V2[BP3O12(OH)][HPO4]}$. Zeitschrift für Kristallographie - New Crystal Structures 2014, 225 (1), 3–4. https://doi.org/10.1524/ncrs.2010.0002. (Open Access)

                              4. Yang, M.; Li, X.; Yu, J.; Zhu, J.; Liu, X.; Chen, G.; Yan, Y. $ce{LiCu2[BP2O8(OH)2]}$: A Chiral Open-Framework Copper Borophosphate via Spontaneous Asymmetrical Crystallization. Dalton Trans. 2013, 42 (18), 6298–6301. https://doi.org/10.1039/C3DT50591J.







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 1 hour ago









                              andseliskandselisk

                              13.5k646100




                              13.5k646100























                                  0














                                  This ion is most likely not the correct product, like the answers say, especially since it is not. However, IUPAC has methods on how to name compounds like these. Take a look at this page in the IUPAC red book.



                                  However, if you were to just name the compound, ignoring the fact that its charge does not balance, you would get something along the lines of:



                                  Lithium diboron phosphate heptahydride.






                                  share|improve this answer


























                                    0














                                    This ion is most likely not the correct product, like the answers say, especially since it is not. However, IUPAC has methods on how to name compounds like these. Take a look at this page in the IUPAC red book.



                                    However, if you were to just name the compound, ignoring the fact that its charge does not balance, you would get something along the lines of:



                                    Lithium diboron phosphate heptahydride.






                                    share|improve this answer
























                                      0












                                      0








                                      0






                                      This ion is most likely not the correct product, like the answers say, especially since it is not. However, IUPAC has methods on how to name compounds like these. Take a look at this page in the IUPAC red book.



                                      However, if you were to just name the compound, ignoring the fact that its charge does not balance, you would get something along the lines of:



                                      Lithium diboron phosphate heptahydride.






                                      share|improve this answer












                                      This ion is most likely not the correct product, like the answers say, especially since it is not. However, IUPAC has methods on how to name compounds like these. Take a look at this page in the IUPAC red book.



                                      However, if you were to just name the compound, ignoring the fact that its charge does not balance, you would get something along the lines of:



                                      Lithium diboron phosphate heptahydride.







                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered 2 hours ago









                                      chemN00bchemN00b

                                      298




                                      298






















                                          Wither Fang136 is a new contributor. Be nice, and check out our Code of Conduct.










                                          draft saved

                                          draft discarded


















                                          Wither Fang136 is a new contributor. Be nice, and check out our Code of Conduct.













                                          Wither Fang136 is a new contributor. Be nice, and check out our Code of Conduct.












                                          Wither Fang136 is a new contributor. Be nice, and check out our Code of Conduct.
















                                          Thanks for contributing an answer to Chemistry Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.





                                          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                          Please pay close attention to the following guidance:


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f107629%2fwhat-is-the-name-of-this-chemical-lib2po4h7%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          サソリ

                                          広島県道265号伴広島線

                                          Accessing regular linux commands in Huawei's Dopra Linux