Always a full Moon for the Emperor - Can this be achieved with solar panels and LEDs?











up vote
5
down vote

favorite












The Emperor of the World wants there always to be a full moon. His Scientific Advisor (the SA) comes up with a plan.



He plans to cost out the venture, hand it over to the Keeper of the Treasury who then has the unpleasant job of explaining to the Emperor how much it will cost.



The SA's plan is to to cover the entire surface of the moon with a network of LEDs, solar panels and rechargeable batteries.



The sunny side of the Moon will charge the batteries and the dark part of the moon will be lit up with the LEDs. Detectors will make sure that only the dark parts of the Moon facing the Earth are lit.



Ignore the exorbitant cost, not to say the virtually impossible task of transporting the materials - those difficulties will be presented to the Emperor by the unfortunate Keeper of the Treasury.



Question



In theory, given unlimited resources and using 2018 technology could the SA ensure that there was always the equivalent of a full Moon in terms of brightness. Are there any insurmountable technical problems?





Side Note - Not part of the question but the emperor wants a picture of his face to flash on and off when a New Moon coincides with his birthday. Eventually he would like the Moon to act as a colour TV screen for propaganda.










share|improve this question






















  • Is the emperor also going to keep these panels clean from dust?
    – NofP
    6 hours ago










  • Unless there is some sort of time restriction, I dont really see why we can't do anything with unlimited resources.
    – Shadowzee
    6 hours ago






  • 1




    Assassinating or otherwise convincing the emperor to "stop it" are much cheaper solutions. However, the army of needed maintenance techs would at least get to live on the moon and the kick to space tech would have an interesting societal impact.
    – Gary Walker
    3 hours ago






  • 1




    @NofP There's no atmosphere on the moon, how dusty does it get? Occasional meteors?
    – Xen2050
    2 hours ago










  • The LED plan seems to miss an obvious problem: the moon orbits the Earth, and so is visible (even if only illuminated by Earthshine) only half the time. Better to cover the actual moon with ultra-black panels so it can't be seen, and build an inflatable faux moon (a larger version of the early Echo satellites) in geostationary orbit.
    – jamesqf
    7 mins ago















up vote
5
down vote

favorite












The Emperor of the World wants there always to be a full moon. His Scientific Advisor (the SA) comes up with a plan.



He plans to cost out the venture, hand it over to the Keeper of the Treasury who then has the unpleasant job of explaining to the Emperor how much it will cost.



The SA's plan is to to cover the entire surface of the moon with a network of LEDs, solar panels and rechargeable batteries.



The sunny side of the Moon will charge the batteries and the dark part of the moon will be lit up with the LEDs. Detectors will make sure that only the dark parts of the Moon facing the Earth are lit.



Ignore the exorbitant cost, not to say the virtually impossible task of transporting the materials - those difficulties will be presented to the Emperor by the unfortunate Keeper of the Treasury.



Question



In theory, given unlimited resources and using 2018 technology could the SA ensure that there was always the equivalent of a full Moon in terms of brightness. Are there any insurmountable technical problems?





Side Note - Not part of the question but the emperor wants a picture of his face to flash on and off when a New Moon coincides with his birthday. Eventually he would like the Moon to act as a colour TV screen for propaganda.










share|improve this question






















  • Is the emperor also going to keep these panels clean from dust?
    – NofP
    6 hours ago










  • Unless there is some sort of time restriction, I dont really see why we can't do anything with unlimited resources.
    – Shadowzee
    6 hours ago






  • 1




    Assassinating or otherwise convincing the emperor to "stop it" are much cheaper solutions. However, the army of needed maintenance techs would at least get to live on the moon and the kick to space tech would have an interesting societal impact.
    – Gary Walker
    3 hours ago






  • 1




    @NofP There's no atmosphere on the moon, how dusty does it get? Occasional meteors?
    – Xen2050
    2 hours ago










  • The LED plan seems to miss an obvious problem: the moon orbits the Earth, and so is visible (even if only illuminated by Earthshine) only half the time. Better to cover the actual moon with ultra-black panels so it can't be seen, and build an inflatable faux moon (a larger version of the early Echo satellites) in geostationary orbit.
    – jamesqf
    7 mins ago













up vote
5
down vote

favorite









up vote
5
down vote

favorite











The Emperor of the World wants there always to be a full moon. His Scientific Advisor (the SA) comes up with a plan.



He plans to cost out the venture, hand it over to the Keeper of the Treasury who then has the unpleasant job of explaining to the Emperor how much it will cost.



The SA's plan is to to cover the entire surface of the moon with a network of LEDs, solar panels and rechargeable batteries.



The sunny side of the Moon will charge the batteries and the dark part of the moon will be lit up with the LEDs. Detectors will make sure that only the dark parts of the Moon facing the Earth are lit.



Ignore the exorbitant cost, not to say the virtually impossible task of transporting the materials - those difficulties will be presented to the Emperor by the unfortunate Keeper of the Treasury.



Question



In theory, given unlimited resources and using 2018 technology could the SA ensure that there was always the equivalent of a full Moon in terms of brightness. Are there any insurmountable technical problems?





Side Note - Not part of the question but the emperor wants a picture of his face to flash on and off when a New Moon coincides with his birthday. Eventually he would like the Moon to act as a colour TV screen for propaganda.










share|improve this question













The Emperor of the World wants there always to be a full moon. His Scientific Advisor (the SA) comes up with a plan.



He plans to cost out the venture, hand it over to the Keeper of the Treasury who then has the unpleasant job of explaining to the Emperor how much it will cost.



The SA's plan is to to cover the entire surface of the moon with a network of LEDs, solar panels and rechargeable batteries.



The sunny side of the Moon will charge the batteries and the dark part of the moon will be lit up with the LEDs. Detectors will make sure that only the dark parts of the Moon facing the Earth are lit.



Ignore the exorbitant cost, not to say the virtually impossible task of transporting the materials - those difficulties will be presented to the Emperor by the unfortunate Keeper of the Treasury.



Question



In theory, given unlimited resources and using 2018 technology could the SA ensure that there was always the equivalent of a full Moon in terms of brightness. Are there any insurmountable technical problems?





Side Note - Not part of the question but the emperor wants a picture of his face to flash on and off when a New Moon coincides with his birthday. Eventually he would like the Moon to act as a colour TV screen for propaganda.







science-based moons light






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 6 hours ago









chasly from UK

8,46934085




8,46934085












  • Is the emperor also going to keep these panels clean from dust?
    – NofP
    6 hours ago










  • Unless there is some sort of time restriction, I dont really see why we can't do anything with unlimited resources.
    – Shadowzee
    6 hours ago






  • 1




    Assassinating or otherwise convincing the emperor to "stop it" are much cheaper solutions. However, the army of needed maintenance techs would at least get to live on the moon and the kick to space tech would have an interesting societal impact.
    – Gary Walker
    3 hours ago






  • 1




    @NofP There's no atmosphere on the moon, how dusty does it get? Occasional meteors?
    – Xen2050
    2 hours ago










  • The LED plan seems to miss an obvious problem: the moon orbits the Earth, and so is visible (even if only illuminated by Earthshine) only half the time. Better to cover the actual moon with ultra-black panels so it can't be seen, and build an inflatable faux moon (a larger version of the early Echo satellites) in geostationary orbit.
    – jamesqf
    7 mins ago


















  • Is the emperor also going to keep these panels clean from dust?
    – NofP
    6 hours ago










  • Unless there is some sort of time restriction, I dont really see why we can't do anything with unlimited resources.
    – Shadowzee
    6 hours ago






  • 1




    Assassinating or otherwise convincing the emperor to "stop it" are much cheaper solutions. However, the army of needed maintenance techs would at least get to live on the moon and the kick to space tech would have an interesting societal impact.
    – Gary Walker
    3 hours ago






  • 1




    @NofP There's no atmosphere on the moon, how dusty does it get? Occasional meteors?
    – Xen2050
    2 hours ago










  • The LED plan seems to miss an obvious problem: the moon orbits the Earth, and so is visible (even if only illuminated by Earthshine) only half the time. Better to cover the actual moon with ultra-black panels so it can't be seen, and build an inflatable faux moon (a larger version of the early Echo satellites) in geostationary orbit.
    – jamesqf
    7 mins ago
















Is the emperor also going to keep these panels clean from dust?
– NofP
6 hours ago




Is the emperor also going to keep these panels clean from dust?
– NofP
6 hours ago












Unless there is some sort of time restriction, I dont really see why we can't do anything with unlimited resources.
– Shadowzee
6 hours ago




Unless there is some sort of time restriction, I dont really see why we can't do anything with unlimited resources.
– Shadowzee
6 hours ago




1




1




Assassinating or otherwise convincing the emperor to "stop it" are much cheaper solutions. However, the army of needed maintenance techs would at least get to live on the moon and the kick to space tech would have an interesting societal impact.
– Gary Walker
3 hours ago




Assassinating or otherwise convincing the emperor to "stop it" are much cheaper solutions. However, the army of needed maintenance techs would at least get to live on the moon and the kick to space tech would have an interesting societal impact.
– Gary Walker
3 hours ago




1




1




@NofP There's no atmosphere on the moon, how dusty does it get? Occasional meteors?
– Xen2050
2 hours ago




@NofP There's no atmosphere on the moon, how dusty does it get? Occasional meteors?
– Xen2050
2 hours ago












The LED plan seems to miss an obvious problem: the moon orbits the Earth, and so is visible (even if only illuminated by Earthshine) only half the time. Better to cover the actual moon with ultra-black panels so it can't be seen, and build an inflatable faux moon (a larger version of the early Echo satellites) in geostationary orbit.
– jamesqf
7 mins ago




The LED plan seems to miss an obvious problem: the moon orbits the Earth, and so is visible (even if only illuminated by Earthshine) only half the time. Better to cover the actual moon with ultra-black panels so it can't be seen, and build an inflatable faux moon (a larger version of the early Echo satellites) in geostationary orbit.
– jamesqf
7 mins ago










7 Answers
7






active

oldest

votes

















up vote
5
down vote













Sure it is possible (in theory).



Moon's albedo is 12%



Photovoltaic panel efficiency is around 19% (commercially available) and can go up to 40% with more exotic technologies.



Assuming Moon gets the same amount of solar radiation as Earth, surface receives 1367 watts per square meter, 42% of which is visible light, which gives us 574 watts per square meter to play with. LEDs should beam back 69 watts. Assuming that we are using commercially available LEDs with 50% efficiency, 1 square meter should house 138 watts of LED power. This is a lot, but our bulbs will cover only a fraction of surface. The rest can be used for solar panels. Solar panels, on the other hand, will give us 229 watts per square meter.



During lunar day, panels will be baking in sunlight, converting it to electricity, which would be stored in batteries (do we have enough lithium on Earth? Hmm...) during the night, the bulbs will turn on, creating illuminated Moon face.



Also note that while solar panels can cover 100% of Moon surface, LEDs need to be installed only on the visible side, which should double the energy balance in our favor.



P.S. Calculations above assume that lunar LEDs work just like the Moon's surface, i.e. their emission is omnidirectional. Our efficiency can be improved A LOT is we are allowed to beam light only in Earth's direction.






share|improve this answer























  • You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
    – plasticinsect
    5 hours ago










  • Why does it have to be LIon? Other energy storage strategies are available.
    – Joe Bloggs
    13 mins ago


















up vote
3
down vote













Numbers, numbers





  • The actual Moon surface is quite dark; the albedo of the Moon is 0.136. This means that the Moon reflects only 13.5% of the sunlight it receives. Moreover, the reflection is diffuse, that is, the reflected light goes all over the place, not only towards Earth.



    In order to move light from the far side of the Moon to the near side in the form of electric power, we need to (1) capture the energy of the light and convert it to electric energy, (2) transfer the electric energy to the near side, and finally (3) convert the electric energy into light. The overall efficiency of the process must at least match the 13.6% achieved by the Moon rocks through reflection.



    Can this be done?



  • The efficiency of a decent photovoltaic panel is about 20%, meaning that the panel converts 20% of the incoming light energy into electric energy.


  • The efficiency of a white LED lamp is currently around 15%, but 20% efficient lamps exist; the theoretical maximum luminous efficacy of a white LED is about 40%. Let's say that the emperor's scientists have achieved the capacity to make white LEDs with 30% luminous efficacy.


  • Let's put the efficiency of electric power transmission at 90%.



  • Overall this gives 20% (light-to-electricity conversion) × 90% (transmission) × 30% (electricity-to-light conversion) = 5.4% overall efficiency. This means that, at best, the artificially illuminated new moon will have about 40% of the luminosity of the full moon; in photographic terms, that's a difference of about 3.5 stops of exposure; in astronomical terms, this is a difference of one magnitude.



    How visible is the difference in luminosity? Here is an image showing a normally exposed full Moon and a copy with the luminosity reduced to 40%.




The Moon with normal and 2.5 times smaller luminosity



The photograph of the Moon on the left is exposed so that the highlights are close to the maximum value, without exceeding it. The Moon on the right is the same image, digitally manipulated to make the Moon have 40% of the luminosity. Own work.




  • But what about the phases of the Moon? Won't there be a marked difference in luminosity between the naturally lit and the artificiall lit parts? Yes, there will be a one-magnitude, or 3.5 stops, difference; visible, but hey, it very much better than the current situation.


  • But what about the non-uniform illumination of the photovoltaic panels? True, the Moon is spherical, and the conversion efficiency of the photovoltaic panels on the far side will vary between the theoretical maximum when the Sun is up in the sky to zero when it is on the horizon; this will bring the available power down a factor of two, and make the artificially illuminated part even darker. Actual calculation remain as an exercise for the reader; however, overall we can confidently say that we can build a decent artificial lunar illumination system for our glorious and much beloved emperor.







share|improve this answer





















  • Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
    – JBH
    3 hours ago








  • 2




    Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
    – Gary Walker
    3 hours ago










  • Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
    – MttJocy
    3 hours ago










  • @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
    – AlexP
    2 hours ago


















up vote
2
down vote













EDIT: It can be done, see my second edit below.



Fundamentally can't be done. This issue was parodied at XKCD. The gist of the problem is this: you can't duplicate the firepower of the sun, especially if you're using a solar-based power system that isn't 100% efficient. Even if it was. It would need to acquire 100% of the solar energy that would hit the moon during a full moon, transfer that power perfectly (100% efficiency... the engineer within is starting to weep) to LEDs, which can emit the collected power as photons with 100% perfect conversion (oh, the pain!).



Can't be done without serious power. Serious. Check out the link. Serious.





Edit:



Also, remember that where there's solar panel, there isn't LEDs. You can hide the batteries underground and put the panels on the backside of the moon (it's tidally locked), but that means you must capture and store enough power to illuminate all those buka-watt LEDs for each night. Serious.





Edit:



OK, Shadoweze has piqued my curiosity. Lunar albedo for a full moon is 0.12. Albedo is the ratio of energy received to energy reflected. The sun bathes the moon in 1kw/m. So the reflection, what we need to achieve, is 0.12kw/m.



The full-moon lunar surface is 1013 m2. That means we need to generate 1.2E12 watts or 1.2 terrawatts. The most efficient solar panel in 2018 has a 22.2% efficiency. That means for every kw of solar energy we'll actually have only .222 kw to work with. That's twice-ish what we need, so far so good.



Average lunar light is about 0.015 foot-candles or about 0.0019 lumens per m2 for 0.016 lumens-per-watt of lunar emittance. 2018's most efficient LED is 105 lumens-per-watt. Good news! We don't need to cover every inch of the earth-side of the lunar surface!



Better news is that for each pass of the moon in front of the sun, there isn't a commensurate "full-moon" pass for the earth. The moon varies from a new moon (100% LED use) to a full moon (0% LED use). I'm absolutely wrong with the assertion I'm about to make, but to keep this from becoming a full dissertation, let's assume we only need to store 50% of the power needed to hold a full moon all the time and there's enough space between the LEDs that we can use detectors to shut off the LEDs we don't need during each phase of the moon. (And I'm ignoring the fact that we only need to turn the LEDs on when the emporer is in the night cycle. Who cares what the peons see, right?)



OK, I'm convinced. Shadowzee's right. It can be done. It might need enough battery mass to shift the moon's orbit... but it can be done.



Why is the XKCD no longer relevant? It's emitted light from the earth reflecting off the moon. That takes a ton more power, and I'd ignored it.






share|improve this answer



















  • 1




    Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
    – Shadowzee
    6 hours ago










  • @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
    – JBH
    6 hours ago












  • I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
    – Shadowzee
    5 hours ago










  • @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
    – JBH
    4 hours ago










  • @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
    – JBH
    4 hours ago


















up vote
2
down vote













I wouldn't touch the actual moon, it's 384,400km away, it seems much cheaper & within reach to make your own "equivalent" using an array of satellites (maybe only 320km - 600km away) with very bright lights, maybe in a geosynchronous orbit (approximately 35,786 km away) to keep them at least visible every night, using each one like a single pixel in a very large "display screen".



Either individual satellites just close enough together to look right, or tethered together with cables or filaments, or an extremely large single array or framework of bright lights.



So you end up with a virtual LED display in space. Perfect for displaying messages, or depending on the density of lights, even any picture or video.



With unlimited resources & energy, powering them should be within reach today with either solar power & batteries, or nuclear, or maybe even a Tesla-esque wireless power transmission from earth. Taking the "unlimited resources" more literally, then the pixel-satellites could even be brighter than the actual moon, so a "sky television" could even be seen during the day.



Some satellites are already visible from the earth now (and I'm pretty sure they don't even have any purpose-built lights aimed at the earth). Here's an image of some from How to See and Photograph Geosynchronous Satellites:



enter image description here



Just imagine a few million of them, tied together in a giant "screen" array, with unlimited energy for bright colours, and you've got your emperor's face, and propaganda, and a moving zooming or even exploding image of the moon, or Mars, or Jupiter, or anything really.



Here's a hopefully poor example using 160 computer keyboards (each with maybe 100 led lights), but it should give an idea of what's possible with even just 160,000 lights (from here, video here or directly on YouTube):



enter image description here






share|improve this answer






























    up vote
    1
    down vote













    As already stated - lighting up the surface of the Moon with LED's to mimic a full one can't be done with just solar panels and LED's.



    "Possible" other options?




    • Nuclear power to provide the electricity - @Gary Walker pointed out the amount of Thorium on the moon to use for fuel. Benefit of not being limited by incoming sunlight

    • Earth based generators beaming power to the moon via microwaves?

    • Network of giant mirror satellites to reflect sunlight onto the moon when it's behind earth

    • During non-full moons, fly a massive plane/drone equipped with a giant LED screen between the Emperor's location and the moon, to mimic the appearance of a full moon. Added bonus of being able to display messages






    share|improve this answer



















    • 1




      How is nuclear a problem? The technology has been available since world war 2
      – Shadowzee
      5 hours ago










    • I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
      – Chromane
      5 hours ago






    • 1




      The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
      – Cadence
      5 hours ago










    • @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
      – Gary Walker
      3 hours ago




















    up vote
    0
    down vote













    This is impossible for a multitude of reasons.



    First of all, the moon doesn't really receive enough sunlight to power LEDs covering half of its surface. The amount of energy a single square inch of modern solar panel produces in an hour is only about 0.1 watts, whereas the amount of energy required to power a single modern LED for an hour is 6 watts. That means that an 8"x8" solar panel would be required to constantly power an LED that takes up a fraction of a square inch of space. Area-wise, the bright side of the moon just isn't big enough to power its opposite half.



    Second, there is the issue of transporting the power you get to the LEDs. Every cable that we have loses power for every foot that it travels, which is a natural limit on how far power can be transported. Even with fiber optic -- the most efficient path we could use with 2018 technology -- the power loss experienced over the hundreds of miles of the moon's diameter would be too great for anything to reach the other end.






    share|improve this answer





















    • We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
      – Alexander
      5 hours ago










    • @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
      – JBH
      4 hours ago


















    up vote
    0
    down vote













    Much cheaper option:



    Every evening, send a large LED panel into the upper troposphere, e.g., with balloons and haul it down every morning. Since the panel is a lot closer to the ground, it can affordably be a lot smaller in cross section than the moon.



    Plus side:



    You can then rig the LED panel like a normal TV or monitor.



    Minus side:




    • It will always remain in the same place.

    • There will normally be two "moons" in the sky.






    share|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "579"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f131609%2falways-a-full-moon-for-the-emperor-can-this-be-achieved-with-solar-panels-and%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      7 Answers
      7






      active

      oldest

      votes








      7 Answers
      7






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      5
      down vote













      Sure it is possible (in theory).



      Moon's albedo is 12%



      Photovoltaic panel efficiency is around 19% (commercially available) and can go up to 40% with more exotic technologies.



      Assuming Moon gets the same amount of solar radiation as Earth, surface receives 1367 watts per square meter, 42% of which is visible light, which gives us 574 watts per square meter to play with. LEDs should beam back 69 watts. Assuming that we are using commercially available LEDs with 50% efficiency, 1 square meter should house 138 watts of LED power. This is a lot, but our bulbs will cover only a fraction of surface. The rest can be used for solar panels. Solar panels, on the other hand, will give us 229 watts per square meter.



      During lunar day, panels will be baking in sunlight, converting it to electricity, which would be stored in batteries (do we have enough lithium on Earth? Hmm...) during the night, the bulbs will turn on, creating illuminated Moon face.



      Also note that while solar panels can cover 100% of Moon surface, LEDs need to be installed only on the visible side, which should double the energy balance in our favor.



      P.S. Calculations above assume that lunar LEDs work just like the Moon's surface, i.e. their emission is omnidirectional. Our efficiency can be improved A LOT is we are allowed to beam light only in Earth's direction.






      share|improve this answer























      • You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
        – plasticinsect
        5 hours ago










      • Why does it have to be LIon? Other energy storage strategies are available.
        – Joe Bloggs
        13 mins ago















      up vote
      5
      down vote













      Sure it is possible (in theory).



      Moon's albedo is 12%



      Photovoltaic panel efficiency is around 19% (commercially available) and can go up to 40% with more exotic technologies.



      Assuming Moon gets the same amount of solar radiation as Earth, surface receives 1367 watts per square meter, 42% of which is visible light, which gives us 574 watts per square meter to play with. LEDs should beam back 69 watts. Assuming that we are using commercially available LEDs with 50% efficiency, 1 square meter should house 138 watts of LED power. This is a lot, but our bulbs will cover only a fraction of surface. The rest can be used for solar panels. Solar panels, on the other hand, will give us 229 watts per square meter.



      During lunar day, panels will be baking in sunlight, converting it to electricity, which would be stored in batteries (do we have enough lithium on Earth? Hmm...) during the night, the bulbs will turn on, creating illuminated Moon face.



      Also note that while solar panels can cover 100% of Moon surface, LEDs need to be installed only on the visible side, which should double the energy balance in our favor.



      P.S. Calculations above assume that lunar LEDs work just like the Moon's surface, i.e. their emission is omnidirectional. Our efficiency can be improved A LOT is we are allowed to beam light only in Earth's direction.






      share|improve this answer























      • You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
        – plasticinsect
        5 hours ago










      • Why does it have to be LIon? Other energy storage strategies are available.
        – Joe Bloggs
        13 mins ago













      up vote
      5
      down vote










      up vote
      5
      down vote









      Sure it is possible (in theory).



      Moon's albedo is 12%



      Photovoltaic panel efficiency is around 19% (commercially available) and can go up to 40% with more exotic technologies.



      Assuming Moon gets the same amount of solar radiation as Earth, surface receives 1367 watts per square meter, 42% of which is visible light, which gives us 574 watts per square meter to play with. LEDs should beam back 69 watts. Assuming that we are using commercially available LEDs with 50% efficiency, 1 square meter should house 138 watts of LED power. This is a lot, but our bulbs will cover only a fraction of surface. The rest can be used for solar panels. Solar panels, on the other hand, will give us 229 watts per square meter.



      During lunar day, panels will be baking in sunlight, converting it to electricity, which would be stored in batteries (do we have enough lithium on Earth? Hmm...) during the night, the bulbs will turn on, creating illuminated Moon face.



      Also note that while solar panels can cover 100% of Moon surface, LEDs need to be installed only on the visible side, which should double the energy balance in our favor.



      P.S. Calculations above assume that lunar LEDs work just like the Moon's surface, i.e. their emission is omnidirectional. Our efficiency can be improved A LOT is we are allowed to beam light only in Earth's direction.






      share|improve this answer














      Sure it is possible (in theory).



      Moon's albedo is 12%



      Photovoltaic panel efficiency is around 19% (commercially available) and can go up to 40% with more exotic technologies.



      Assuming Moon gets the same amount of solar radiation as Earth, surface receives 1367 watts per square meter, 42% of which is visible light, which gives us 574 watts per square meter to play with. LEDs should beam back 69 watts. Assuming that we are using commercially available LEDs with 50% efficiency, 1 square meter should house 138 watts of LED power. This is a lot, but our bulbs will cover only a fraction of surface. The rest can be used for solar panels. Solar panels, on the other hand, will give us 229 watts per square meter.



      During lunar day, panels will be baking in sunlight, converting it to electricity, which would be stored in batteries (do we have enough lithium on Earth? Hmm...) during the night, the bulbs will turn on, creating illuminated Moon face.



      Also note that while solar panels can cover 100% of Moon surface, LEDs need to be installed only on the visible side, which should double the energy balance in our favor.



      P.S. Calculations above assume that lunar LEDs work just like the Moon's surface, i.e. their emission is omnidirectional. Our efficiency can be improved A LOT is we are allowed to beam light only in Earth's direction.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 5 hours ago

























      answered 5 hours ago









      Alexander

      18k42969




      18k42969












      • You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
        – plasticinsect
        5 hours ago










      • Why does it have to be LIon? Other energy storage strategies are available.
        – Joe Bloggs
        13 mins ago


















      • You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
        – plasticinsect
        5 hours ago










      • Why does it have to be LIon? Other energy storage strategies are available.
        – Joe Bloggs
        13 mins ago
















      You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
      – plasticinsect
      5 hours ago




      You should also take the charge/discharge efficiency of lithium ion batteries into account. (Wikipedia says this is 80% - 90%.)
      – plasticinsect
      5 hours ago












      Why does it have to be LIon? Other energy storage strategies are available.
      – Joe Bloggs
      13 mins ago




      Why does it have to be LIon? Other energy storage strategies are available.
      – Joe Bloggs
      13 mins ago










      up vote
      3
      down vote













      Numbers, numbers





      • The actual Moon surface is quite dark; the albedo of the Moon is 0.136. This means that the Moon reflects only 13.5% of the sunlight it receives. Moreover, the reflection is diffuse, that is, the reflected light goes all over the place, not only towards Earth.



        In order to move light from the far side of the Moon to the near side in the form of electric power, we need to (1) capture the energy of the light and convert it to electric energy, (2) transfer the electric energy to the near side, and finally (3) convert the electric energy into light. The overall efficiency of the process must at least match the 13.6% achieved by the Moon rocks through reflection.



        Can this be done?



      • The efficiency of a decent photovoltaic panel is about 20%, meaning that the panel converts 20% of the incoming light energy into electric energy.


      • The efficiency of a white LED lamp is currently around 15%, but 20% efficient lamps exist; the theoretical maximum luminous efficacy of a white LED is about 40%. Let's say that the emperor's scientists have achieved the capacity to make white LEDs with 30% luminous efficacy.


      • Let's put the efficiency of electric power transmission at 90%.



      • Overall this gives 20% (light-to-electricity conversion) × 90% (transmission) × 30% (electricity-to-light conversion) = 5.4% overall efficiency. This means that, at best, the artificially illuminated new moon will have about 40% of the luminosity of the full moon; in photographic terms, that's a difference of about 3.5 stops of exposure; in astronomical terms, this is a difference of one magnitude.



        How visible is the difference in luminosity? Here is an image showing a normally exposed full Moon and a copy with the luminosity reduced to 40%.




      The Moon with normal and 2.5 times smaller luminosity



      The photograph of the Moon on the left is exposed so that the highlights are close to the maximum value, without exceeding it. The Moon on the right is the same image, digitally manipulated to make the Moon have 40% of the luminosity. Own work.




      • But what about the phases of the Moon? Won't there be a marked difference in luminosity between the naturally lit and the artificiall lit parts? Yes, there will be a one-magnitude, or 3.5 stops, difference; visible, but hey, it very much better than the current situation.


      • But what about the non-uniform illumination of the photovoltaic panels? True, the Moon is spherical, and the conversion efficiency of the photovoltaic panels on the far side will vary between the theoretical maximum when the Sun is up in the sky to zero when it is on the horizon; this will bring the available power down a factor of two, and make the artificially illuminated part even darker. Actual calculation remain as an exercise for the reader; however, overall we can confidently say that we can build a decent artificial lunar illumination system for our glorious and much beloved emperor.







      share|improve this answer





















      • Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
        – JBH
        3 hours ago








      • 2




        Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
        – Gary Walker
        3 hours ago










      • Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
        – MttJocy
        3 hours ago










      • @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
        – AlexP
        2 hours ago















      up vote
      3
      down vote













      Numbers, numbers





      • The actual Moon surface is quite dark; the albedo of the Moon is 0.136. This means that the Moon reflects only 13.5% of the sunlight it receives. Moreover, the reflection is diffuse, that is, the reflected light goes all over the place, not only towards Earth.



        In order to move light from the far side of the Moon to the near side in the form of electric power, we need to (1) capture the energy of the light and convert it to electric energy, (2) transfer the electric energy to the near side, and finally (3) convert the electric energy into light. The overall efficiency of the process must at least match the 13.6% achieved by the Moon rocks through reflection.



        Can this be done?



      • The efficiency of a decent photovoltaic panel is about 20%, meaning that the panel converts 20% of the incoming light energy into electric energy.


      • The efficiency of a white LED lamp is currently around 15%, but 20% efficient lamps exist; the theoretical maximum luminous efficacy of a white LED is about 40%. Let's say that the emperor's scientists have achieved the capacity to make white LEDs with 30% luminous efficacy.


      • Let's put the efficiency of electric power transmission at 90%.



      • Overall this gives 20% (light-to-electricity conversion) × 90% (transmission) × 30% (electricity-to-light conversion) = 5.4% overall efficiency. This means that, at best, the artificially illuminated new moon will have about 40% of the luminosity of the full moon; in photographic terms, that's a difference of about 3.5 stops of exposure; in astronomical terms, this is a difference of one magnitude.



        How visible is the difference in luminosity? Here is an image showing a normally exposed full Moon and a copy with the luminosity reduced to 40%.




      The Moon with normal and 2.5 times smaller luminosity



      The photograph of the Moon on the left is exposed so that the highlights are close to the maximum value, without exceeding it. The Moon on the right is the same image, digitally manipulated to make the Moon have 40% of the luminosity. Own work.




      • But what about the phases of the Moon? Won't there be a marked difference in luminosity between the naturally lit and the artificiall lit parts? Yes, there will be a one-magnitude, or 3.5 stops, difference; visible, but hey, it very much better than the current situation.


      • But what about the non-uniform illumination of the photovoltaic panels? True, the Moon is spherical, and the conversion efficiency of the photovoltaic panels on the far side will vary between the theoretical maximum when the Sun is up in the sky to zero when it is on the horizon; this will bring the available power down a factor of two, and make the artificially illuminated part even darker. Actual calculation remain as an exercise for the reader; however, overall we can confidently say that we can build a decent artificial lunar illumination system for our glorious and much beloved emperor.







      share|improve this answer





















      • Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
        – JBH
        3 hours ago








      • 2




        Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
        – Gary Walker
        3 hours ago










      • Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
        – MttJocy
        3 hours ago










      • @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
        – AlexP
        2 hours ago













      up vote
      3
      down vote










      up vote
      3
      down vote









      Numbers, numbers





      • The actual Moon surface is quite dark; the albedo of the Moon is 0.136. This means that the Moon reflects only 13.5% of the sunlight it receives. Moreover, the reflection is diffuse, that is, the reflected light goes all over the place, not only towards Earth.



        In order to move light from the far side of the Moon to the near side in the form of electric power, we need to (1) capture the energy of the light and convert it to electric energy, (2) transfer the electric energy to the near side, and finally (3) convert the electric energy into light. The overall efficiency of the process must at least match the 13.6% achieved by the Moon rocks through reflection.



        Can this be done?



      • The efficiency of a decent photovoltaic panel is about 20%, meaning that the panel converts 20% of the incoming light energy into electric energy.


      • The efficiency of a white LED lamp is currently around 15%, but 20% efficient lamps exist; the theoretical maximum luminous efficacy of a white LED is about 40%. Let's say that the emperor's scientists have achieved the capacity to make white LEDs with 30% luminous efficacy.


      • Let's put the efficiency of electric power transmission at 90%.



      • Overall this gives 20% (light-to-electricity conversion) × 90% (transmission) × 30% (electricity-to-light conversion) = 5.4% overall efficiency. This means that, at best, the artificially illuminated new moon will have about 40% of the luminosity of the full moon; in photographic terms, that's a difference of about 3.5 stops of exposure; in astronomical terms, this is a difference of one magnitude.



        How visible is the difference in luminosity? Here is an image showing a normally exposed full Moon and a copy with the luminosity reduced to 40%.




      The Moon with normal and 2.5 times smaller luminosity



      The photograph of the Moon on the left is exposed so that the highlights are close to the maximum value, without exceeding it. The Moon on the right is the same image, digitally manipulated to make the Moon have 40% of the luminosity. Own work.




      • But what about the phases of the Moon? Won't there be a marked difference in luminosity between the naturally lit and the artificiall lit parts? Yes, there will be a one-magnitude, or 3.5 stops, difference; visible, but hey, it very much better than the current situation.


      • But what about the non-uniform illumination of the photovoltaic panels? True, the Moon is spherical, and the conversion efficiency of the photovoltaic panels on the far side will vary between the theoretical maximum when the Sun is up in the sky to zero when it is on the horizon; this will bring the available power down a factor of two, and make the artificially illuminated part even darker. Actual calculation remain as an exercise for the reader; however, overall we can confidently say that we can build a decent artificial lunar illumination system for our glorious and much beloved emperor.







      share|improve this answer












      Numbers, numbers





      • The actual Moon surface is quite dark; the albedo of the Moon is 0.136. This means that the Moon reflects only 13.5% of the sunlight it receives. Moreover, the reflection is diffuse, that is, the reflected light goes all over the place, not only towards Earth.



        In order to move light from the far side of the Moon to the near side in the form of electric power, we need to (1) capture the energy of the light and convert it to electric energy, (2) transfer the electric energy to the near side, and finally (3) convert the electric energy into light. The overall efficiency of the process must at least match the 13.6% achieved by the Moon rocks through reflection.



        Can this be done?



      • The efficiency of a decent photovoltaic panel is about 20%, meaning that the panel converts 20% of the incoming light energy into electric energy.


      • The efficiency of a white LED lamp is currently around 15%, but 20% efficient lamps exist; the theoretical maximum luminous efficacy of a white LED is about 40%. Let's say that the emperor's scientists have achieved the capacity to make white LEDs with 30% luminous efficacy.


      • Let's put the efficiency of electric power transmission at 90%.



      • Overall this gives 20% (light-to-electricity conversion) × 90% (transmission) × 30% (electricity-to-light conversion) = 5.4% overall efficiency. This means that, at best, the artificially illuminated new moon will have about 40% of the luminosity of the full moon; in photographic terms, that's a difference of about 3.5 stops of exposure; in astronomical terms, this is a difference of one magnitude.



        How visible is the difference in luminosity? Here is an image showing a normally exposed full Moon and a copy with the luminosity reduced to 40%.




      The Moon with normal and 2.5 times smaller luminosity



      The photograph of the Moon on the left is exposed so that the highlights are close to the maximum value, without exceeding it. The Moon on the right is the same image, digitally manipulated to make the Moon have 40% of the luminosity. Own work.




      • But what about the phases of the Moon? Won't there be a marked difference in luminosity between the naturally lit and the artificiall lit parts? Yes, there will be a one-magnitude, or 3.5 stops, difference; visible, but hey, it very much better than the current situation.


      • But what about the non-uniform illumination of the photovoltaic panels? True, the Moon is spherical, and the conversion efficiency of the photovoltaic panels on the far side will vary between the theoretical maximum when the Sun is up in the sky to zero when it is on the horizon; this will bring the available power down a factor of two, and make the artificially illuminated part even darker. Actual calculation remain as an exercise for the reader; however, overall we can confidently say that we can build a decent artificial lunar illumination system for our glorious and much beloved emperor.








      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered 5 hours ago









      AlexP

      34.5k778132




      34.5k778132












      • Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
        – JBH
        3 hours ago








      • 2




        Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
        – Gary Walker
        3 hours ago










      • Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
        – MttJocy
        3 hours ago










      • @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
        – AlexP
        2 hours ago


















      • Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
        – JBH
        3 hours ago








      • 2




        Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
        – Gary Walker
        3 hours ago










      • Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
        – MttJocy
        3 hours ago










      • @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
        – AlexP
        2 hours ago
















      Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
      – JBH
      3 hours ago






      Check out my answer and see if why I disagree with you (I claim, now, that it can be done) is wrong. LED efficiency isn't particularly useful until you normalize lumens. I'm curious to know if my analysis was bad.
      – JBH
      3 hours ago






      2




      2




      Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
      – Gary Walker
      3 hours ago




      Why would you not aim the LEDs so that they point to the earth. An directional lighting would be much more efficient in terms of lighting up our planet.
      – Gary Walker
      3 hours ago












      Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
      – MttJocy
      3 hours ago




      Hmm this does make me wonder how much we would be allowed to get away with faking it would it be allowed for example to essentially turn the uniluminated portion of the moon facing Earth into effectively a giant LED display that simply displays the image of the moon that would be visible if illuminated. If so we can get better results for less power by focusing the light from each point more closely onto the 2 degrees of sky containing Earth than the 178 degrees of sky conspicuously lacking any presence of Earth.
      – MttJocy
      3 hours ago












      @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
      – AlexP
      2 hours ago




      @JBH: We both say that it can be done. This calculation is made without batteries, just moving electric power from the illuminated (but invisible) side to the visible (but not illuminated) side. The rest is just a difference of values for efficiencies, which are anyway best guesses.
      – AlexP
      2 hours ago










      up vote
      2
      down vote













      EDIT: It can be done, see my second edit below.



      Fundamentally can't be done. This issue was parodied at XKCD. The gist of the problem is this: you can't duplicate the firepower of the sun, especially if you're using a solar-based power system that isn't 100% efficient. Even if it was. It would need to acquire 100% of the solar energy that would hit the moon during a full moon, transfer that power perfectly (100% efficiency... the engineer within is starting to weep) to LEDs, which can emit the collected power as photons with 100% perfect conversion (oh, the pain!).



      Can't be done without serious power. Serious. Check out the link. Serious.





      Edit:



      Also, remember that where there's solar panel, there isn't LEDs. You can hide the batteries underground and put the panels on the backside of the moon (it's tidally locked), but that means you must capture and store enough power to illuminate all those buka-watt LEDs for each night. Serious.





      Edit:



      OK, Shadoweze has piqued my curiosity. Lunar albedo for a full moon is 0.12. Albedo is the ratio of energy received to energy reflected. The sun bathes the moon in 1kw/m. So the reflection, what we need to achieve, is 0.12kw/m.



      The full-moon lunar surface is 1013 m2. That means we need to generate 1.2E12 watts or 1.2 terrawatts. The most efficient solar panel in 2018 has a 22.2% efficiency. That means for every kw of solar energy we'll actually have only .222 kw to work with. That's twice-ish what we need, so far so good.



      Average lunar light is about 0.015 foot-candles or about 0.0019 lumens per m2 for 0.016 lumens-per-watt of lunar emittance. 2018's most efficient LED is 105 lumens-per-watt. Good news! We don't need to cover every inch of the earth-side of the lunar surface!



      Better news is that for each pass of the moon in front of the sun, there isn't a commensurate "full-moon" pass for the earth. The moon varies from a new moon (100% LED use) to a full moon (0% LED use). I'm absolutely wrong with the assertion I'm about to make, but to keep this from becoming a full dissertation, let's assume we only need to store 50% of the power needed to hold a full moon all the time and there's enough space between the LEDs that we can use detectors to shut off the LEDs we don't need during each phase of the moon. (And I'm ignoring the fact that we only need to turn the LEDs on when the emporer is in the night cycle. Who cares what the peons see, right?)



      OK, I'm convinced. Shadowzee's right. It can be done. It might need enough battery mass to shift the moon's orbit... but it can be done.



      Why is the XKCD no longer relevant? It's emitted light from the earth reflecting off the moon. That takes a ton more power, and I'd ignored it.






      share|improve this answer



















      • 1




        Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
        – Shadowzee
        6 hours ago










      • @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
        – JBH
        6 hours ago












      • I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
        – Shadowzee
        5 hours ago










      • @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
        – JBH
        4 hours ago










      • @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
        – JBH
        4 hours ago















      up vote
      2
      down vote













      EDIT: It can be done, see my second edit below.



      Fundamentally can't be done. This issue was parodied at XKCD. The gist of the problem is this: you can't duplicate the firepower of the sun, especially if you're using a solar-based power system that isn't 100% efficient. Even if it was. It would need to acquire 100% of the solar energy that would hit the moon during a full moon, transfer that power perfectly (100% efficiency... the engineer within is starting to weep) to LEDs, which can emit the collected power as photons with 100% perfect conversion (oh, the pain!).



      Can't be done without serious power. Serious. Check out the link. Serious.





      Edit:



      Also, remember that where there's solar panel, there isn't LEDs. You can hide the batteries underground and put the panels on the backside of the moon (it's tidally locked), but that means you must capture and store enough power to illuminate all those buka-watt LEDs for each night. Serious.





      Edit:



      OK, Shadoweze has piqued my curiosity. Lunar albedo for a full moon is 0.12. Albedo is the ratio of energy received to energy reflected. The sun bathes the moon in 1kw/m. So the reflection, what we need to achieve, is 0.12kw/m.



      The full-moon lunar surface is 1013 m2. That means we need to generate 1.2E12 watts or 1.2 terrawatts. The most efficient solar panel in 2018 has a 22.2% efficiency. That means for every kw of solar energy we'll actually have only .222 kw to work with. That's twice-ish what we need, so far so good.



      Average lunar light is about 0.015 foot-candles or about 0.0019 lumens per m2 for 0.016 lumens-per-watt of lunar emittance. 2018's most efficient LED is 105 lumens-per-watt. Good news! We don't need to cover every inch of the earth-side of the lunar surface!



      Better news is that for each pass of the moon in front of the sun, there isn't a commensurate "full-moon" pass for the earth. The moon varies from a new moon (100% LED use) to a full moon (0% LED use). I'm absolutely wrong with the assertion I'm about to make, but to keep this from becoming a full dissertation, let's assume we only need to store 50% of the power needed to hold a full moon all the time and there's enough space between the LEDs that we can use detectors to shut off the LEDs we don't need during each phase of the moon. (And I'm ignoring the fact that we only need to turn the LEDs on when the emporer is in the night cycle. Who cares what the peons see, right?)



      OK, I'm convinced. Shadowzee's right. It can be done. It might need enough battery mass to shift the moon's orbit... but it can be done.



      Why is the XKCD no longer relevant? It's emitted light from the earth reflecting off the moon. That takes a ton more power, and I'd ignored it.






      share|improve this answer



















      • 1




        Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
        – Shadowzee
        6 hours ago










      • @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
        – JBH
        6 hours ago












      • I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
        – Shadowzee
        5 hours ago










      • @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
        – JBH
        4 hours ago










      • @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
        – JBH
        4 hours ago













      up vote
      2
      down vote










      up vote
      2
      down vote









      EDIT: It can be done, see my second edit below.



      Fundamentally can't be done. This issue was parodied at XKCD. The gist of the problem is this: you can't duplicate the firepower of the sun, especially if you're using a solar-based power system that isn't 100% efficient. Even if it was. It would need to acquire 100% of the solar energy that would hit the moon during a full moon, transfer that power perfectly (100% efficiency... the engineer within is starting to weep) to LEDs, which can emit the collected power as photons with 100% perfect conversion (oh, the pain!).



      Can't be done without serious power. Serious. Check out the link. Serious.





      Edit:



      Also, remember that where there's solar panel, there isn't LEDs. You can hide the batteries underground and put the panels on the backside of the moon (it's tidally locked), but that means you must capture and store enough power to illuminate all those buka-watt LEDs for each night. Serious.





      Edit:



      OK, Shadoweze has piqued my curiosity. Lunar albedo for a full moon is 0.12. Albedo is the ratio of energy received to energy reflected. The sun bathes the moon in 1kw/m. So the reflection, what we need to achieve, is 0.12kw/m.



      The full-moon lunar surface is 1013 m2. That means we need to generate 1.2E12 watts or 1.2 terrawatts. The most efficient solar panel in 2018 has a 22.2% efficiency. That means for every kw of solar energy we'll actually have only .222 kw to work with. That's twice-ish what we need, so far so good.



      Average lunar light is about 0.015 foot-candles or about 0.0019 lumens per m2 for 0.016 lumens-per-watt of lunar emittance. 2018's most efficient LED is 105 lumens-per-watt. Good news! We don't need to cover every inch of the earth-side of the lunar surface!



      Better news is that for each pass of the moon in front of the sun, there isn't a commensurate "full-moon" pass for the earth. The moon varies from a new moon (100% LED use) to a full moon (0% LED use). I'm absolutely wrong with the assertion I'm about to make, but to keep this from becoming a full dissertation, let's assume we only need to store 50% of the power needed to hold a full moon all the time and there's enough space between the LEDs that we can use detectors to shut off the LEDs we don't need during each phase of the moon. (And I'm ignoring the fact that we only need to turn the LEDs on when the emporer is in the night cycle. Who cares what the peons see, right?)



      OK, I'm convinced. Shadowzee's right. It can be done. It might need enough battery mass to shift the moon's orbit... but it can be done.



      Why is the XKCD no longer relevant? It's emitted light from the earth reflecting off the moon. That takes a ton more power, and I'd ignored it.






      share|improve this answer














      EDIT: It can be done, see my second edit below.



      Fundamentally can't be done. This issue was parodied at XKCD. The gist of the problem is this: you can't duplicate the firepower of the sun, especially if you're using a solar-based power system that isn't 100% efficient. Even if it was. It would need to acquire 100% of the solar energy that would hit the moon during a full moon, transfer that power perfectly (100% efficiency... the engineer within is starting to weep) to LEDs, which can emit the collected power as photons with 100% perfect conversion (oh, the pain!).



      Can't be done without serious power. Serious. Check out the link. Serious.





      Edit:



      Also, remember that where there's solar panel, there isn't LEDs. You can hide the batteries underground and put the panels on the backside of the moon (it's tidally locked), but that means you must capture and store enough power to illuminate all those buka-watt LEDs for each night. Serious.





      Edit:



      OK, Shadoweze has piqued my curiosity. Lunar albedo for a full moon is 0.12. Albedo is the ratio of energy received to energy reflected. The sun bathes the moon in 1kw/m. So the reflection, what we need to achieve, is 0.12kw/m.



      The full-moon lunar surface is 1013 m2. That means we need to generate 1.2E12 watts or 1.2 terrawatts. The most efficient solar panel in 2018 has a 22.2% efficiency. That means for every kw of solar energy we'll actually have only .222 kw to work with. That's twice-ish what we need, so far so good.



      Average lunar light is about 0.015 foot-candles or about 0.0019 lumens per m2 for 0.016 lumens-per-watt of lunar emittance. 2018's most efficient LED is 105 lumens-per-watt. Good news! We don't need to cover every inch of the earth-side of the lunar surface!



      Better news is that for each pass of the moon in front of the sun, there isn't a commensurate "full-moon" pass for the earth. The moon varies from a new moon (100% LED use) to a full moon (0% LED use). I'm absolutely wrong with the assertion I'm about to make, but to keep this from becoming a full dissertation, let's assume we only need to store 50% of the power needed to hold a full moon all the time and there's enough space between the LEDs that we can use detectors to shut off the LEDs we don't need during each phase of the moon. (And I'm ignoring the fact that we only need to turn the LEDs on when the emporer is in the night cycle. Who cares what the peons see, right?)



      OK, I'm convinced. Shadowzee's right. It can be done. It might need enough battery mass to shift the moon's orbit... but it can be done.



      Why is the XKCD no longer relevant? It's emitted light from the earth reflecting off the moon. That takes a ton more power, and I'd ignored it.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 3 hours ago

























      answered 6 hours ago









      JBH

      37.6k583178




      37.6k583178








      • 1




        Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
        – Shadowzee
        6 hours ago










      • @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
        – JBH
        6 hours ago












      • I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
        – Shadowzee
        5 hours ago










      • @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
        – JBH
        4 hours ago










      • @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
        – JBH
        4 hours ago














      • 1




        Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
        – Shadowzee
        6 hours ago










      • @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
        – JBH
        6 hours ago












      • I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
        – Shadowzee
        5 hours ago










      • @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
        – JBH
        4 hours ago










      • @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
        – JBH
        4 hours ago








      1




      1




      Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
      – Shadowzee
      6 hours ago




      Just add a massive solar array on the far side of the moon so that it is never seen from earth. Unlimited resources is an amazing thing for solving problems.
      – Shadowzee
      6 hours ago












      @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
      – JBH
      6 hours ago






      @Shadowzee, you're timing was perfect. I just commented on that. I'm thinking you'd change the mass of the moon with the batteries needed to pull this stunt off. I'm still claiming it fundamentally can't be done. But, given enough Clarkean Magic....
      – JBH
      6 hours ago














      I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
      – Shadowzee
      5 hours ago




      I know what you mean... but unlimited resources...unlimited..resources. I'm a strong believer of Throw enough engineers, scientists and money at a problem and its going to disappear.
      – Shadowzee
      5 hours ago












      @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
      – JBH
      4 hours ago




      @Shadowzee, meh. Given enough Clarkean Magic everything is possible. That's boring. Half the fun of a story involving this concept is the weaknesses that make it imperfect. Achieving "good enough" is realistic.
      – JBH
      4 hours ago












      @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
      – JBH
      4 hours ago




      @Shadowzee... wait... why is this an unlimited resource? The back side of the moon only faces the sun half the time. It has a limited surface. You can't gather more than 100% of the sunlight in energy. LEDs are brighter per-unit than reflected light off the surface, but you can't collect, store, transfer, and convert energy with 100% efficiency. My engineering spidy sense says this can't work unless the reflectivity of the lunar surface really stinks. Time for some research.
      – JBH
      4 hours ago










      up vote
      2
      down vote













      I wouldn't touch the actual moon, it's 384,400km away, it seems much cheaper & within reach to make your own "equivalent" using an array of satellites (maybe only 320km - 600km away) with very bright lights, maybe in a geosynchronous orbit (approximately 35,786 km away) to keep them at least visible every night, using each one like a single pixel in a very large "display screen".



      Either individual satellites just close enough together to look right, or tethered together with cables or filaments, or an extremely large single array or framework of bright lights.



      So you end up with a virtual LED display in space. Perfect for displaying messages, or depending on the density of lights, even any picture or video.



      With unlimited resources & energy, powering them should be within reach today with either solar power & batteries, or nuclear, or maybe even a Tesla-esque wireless power transmission from earth. Taking the "unlimited resources" more literally, then the pixel-satellites could even be brighter than the actual moon, so a "sky television" could even be seen during the day.



      Some satellites are already visible from the earth now (and I'm pretty sure they don't even have any purpose-built lights aimed at the earth). Here's an image of some from How to See and Photograph Geosynchronous Satellites:



      enter image description here



      Just imagine a few million of them, tied together in a giant "screen" array, with unlimited energy for bright colours, and you've got your emperor's face, and propaganda, and a moving zooming or even exploding image of the moon, or Mars, or Jupiter, or anything really.



      Here's a hopefully poor example using 160 computer keyboards (each with maybe 100 led lights), but it should give an idea of what's possible with even just 160,000 lights (from here, video here or directly on YouTube):



      enter image description here






      share|improve this answer



























        up vote
        2
        down vote













        I wouldn't touch the actual moon, it's 384,400km away, it seems much cheaper & within reach to make your own "equivalent" using an array of satellites (maybe only 320km - 600km away) with very bright lights, maybe in a geosynchronous orbit (approximately 35,786 km away) to keep them at least visible every night, using each one like a single pixel in a very large "display screen".



        Either individual satellites just close enough together to look right, or tethered together with cables or filaments, or an extremely large single array or framework of bright lights.



        So you end up with a virtual LED display in space. Perfect for displaying messages, or depending on the density of lights, even any picture or video.



        With unlimited resources & energy, powering them should be within reach today with either solar power & batteries, or nuclear, or maybe even a Tesla-esque wireless power transmission from earth. Taking the "unlimited resources" more literally, then the pixel-satellites could even be brighter than the actual moon, so a "sky television" could even be seen during the day.



        Some satellites are already visible from the earth now (and I'm pretty sure they don't even have any purpose-built lights aimed at the earth). Here's an image of some from How to See and Photograph Geosynchronous Satellites:



        enter image description here



        Just imagine a few million of them, tied together in a giant "screen" array, with unlimited energy for bright colours, and you've got your emperor's face, and propaganda, and a moving zooming or even exploding image of the moon, or Mars, or Jupiter, or anything really.



        Here's a hopefully poor example using 160 computer keyboards (each with maybe 100 led lights), but it should give an idea of what's possible with even just 160,000 lights (from here, video here or directly on YouTube):



        enter image description here






        share|improve this answer

























          up vote
          2
          down vote










          up vote
          2
          down vote









          I wouldn't touch the actual moon, it's 384,400km away, it seems much cheaper & within reach to make your own "equivalent" using an array of satellites (maybe only 320km - 600km away) with very bright lights, maybe in a geosynchronous orbit (approximately 35,786 km away) to keep them at least visible every night, using each one like a single pixel in a very large "display screen".



          Either individual satellites just close enough together to look right, or tethered together with cables or filaments, or an extremely large single array or framework of bright lights.



          So you end up with a virtual LED display in space. Perfect for displaying messages, or depending on the density of lights, even any picture or video.



          With unlimited resources & energy, powering them should be within reach today with either solar power & batteries, or nuclear, or maybe even a Tesla-esque wireless power transmission from earth. Taking the "unlimited resources" more literally, then the pixel-satellites could even be brighter than the actual moon, so a "sky television" could even be seen during the day.



          Some satellites are already visible from the earth now (and I'm pretty sure they don't even have any purpose-built lights aimed at the earth). Here's an image of some from How to See and Photograph Geosynchronous Satellites:



          enter image description here



          Just imagine a few million of them, tied together in a giant "screen" array, with unlimited energy for bright colours, and you've got your emperor's face, and propaganda, and a moving zooming or even exploding image of the moon, or Mars, or Jupiter, or anything really.



          Here's a hopefully poor example using 160 computer keyboards (each with maybe 100 led lights), but it should give an idea of what's possible with even just 160,000 lights (from here, video here or directly on YouTube):



          enter image description here






          share|improve this answer














          I wouldn't touch the actual moon, it's 384,400km away, it seems much cheaper & within reach to make your own "equivalent" using an array of satellites (maybe only 320km - 600km away) with very bright lights, maybe in a geosynchronous orbit (approximately 35,786 km away) to keep them at least visible every night, using each one like a single pixel in a very large "display screen".



          Either individual satellites just close enough together to look right, or tethered together with cables or filaments, or an extremely large single array or framework of bright lights.



          So you end up with a virtual LED display in space. Perfect for displaying messages, or depending on the density of lights, even any picture or video.



          With unlimited resources & energy, powering them should be within reach today with either solar power & batteries, or nuclear, or maybe even a Tesla-esque wireless power transmission from earth. Taking the "unlimited resources" more literally, then the pixel-satellites could even be brighter than the actual moon, so a "sky television" could even be seen during the day.



          Some satellites are already visible from the earth now (and I'm pretty sure they don't even have any purpose-built lights aimed at the earth). Here's an image of some from How to See and Photograph Geosynchronous Satellites:



          enter image description here



          Just imagine a few million of them, tied together in a giant "screen" array, with unlimited energy for bright colours, and you've got your emperor's face, and propaganda, and a moving zooming or even exploding image of the moon, or Mars, or Jupiter, or anything really.



          Here's a hopefully poor example using 160 computer keyboards (each with maybe 100 led lights), but it should give an idea of what's possible with even just 160,000 lights (from here, video here or directly on YouTube):



          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 46 mins ago

























          answered 1 hour ago









          Xen2050

          1,082413




          1,082413






















              up vote
              1
              down vote













              As already stated - lighting up the surface of the Moon with LED's to mimic a full one can't be done with just solar panels and LED's.



              "Possible" other options?




              • Nuclear power to provide the electricity - @Gary Walker pointed out the amount of Thorium on the moon to use for fuel. Benefit of not being limited by incoming sunlight

              • Earth based generators beaming power to the moon via microwaves?

              • Network of giant mirror satellites to reflect sunlight onto the moon when it's behind earth

              • During non-full moons, fly a massive plane/drone equipped with a giant LED screen between the Emperor's location and the moon, to mimic the appearance of a full moon. Added bonus of being able to display messages






              share|improve this answer



















              • 1




                How is nuclear a problem? The technology has been available since world war 2
                – Shadowzee
                5 hours ago










              • I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
                – Chromane
                5 hours ago






              • 1




                The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
                – Cadence
                5 hours ago










              • @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
                – Gary Walker
                3 hours ago

















              up vote
              1
              down vote













              As already stated - lighting up the surface of the Moon with LED's to mimic a full one can't be done with just solar panels and LED's.



              "Possible" other options?




              • Nuclear power to provide the electricity - @Gary Walker pointed out the amount of Thorium on the moon to use for fuel. Benefit of not being limited by incoming sunlight

              • Earth based generators beaming power to the moon via microwaves?

              • Network of giant mirror satellites to reflect sunlight onto the moon when it's behind earth

              • During non-full moons, fly a massive plane/drone equipped with a giant LED screen between the Emperor's location and the moon, to mimic the appearance of a full moon. Added bonus of being able to display messages






              share|improve this answer



















              • 1




                How is nuclear a problem? The technology has been available since world war 2
                – Shadowzee
                5 hours ago










              • I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
                – Chromane
                5 hours ago






              • 1




                The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
                – Cadence
                5 hours ago










              • @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
                – Gary Walker
                3 hours ago















              up vote
              1
              down vote










              up vote
              1
              down vote









              As already stated - lighting up the surface of the Moon with LED's to mimic a full one can't be done with just solar panels and LED's.



              "Possible" other options?




              • Nuclear power to provide the electricity - @Gary Walker pointed out the amount of Thorium on the moon to use for fuel. Benefit of not being limited by incoming sunlight

              • Earth based generators beaming power to the moon via microwaves?

              • Network of giant mirror satellites to reflect sunlight onto the moon when it's behind earth

              • During non-full moons, fly a massive plane/drone equipped with a giant LED screen between the Emperor's location and the moon, to mimic the appearance of a full moon. Added bonus of being able to display messages






              share|improve this answer














              As already stated - lighting up the surface of the Moon with LED's to mimic a full one can't be done with just solar panels and LED's.



              "Possible" other options?




              • Nuclear power to provide the electricity - @Gary Walker pointed out the amount of Thorium on the moon to use for fuel. Benefit of not being limited by incoming sunlight

              • Earth based generators beaming power to the moon via microwaves?

              • Network of giant mirror satellites to reflect sunlight onto the moon when it's behind earth

              • During non-full moons, fly a massive plane/drone equipped with a giant LED screen between the Emperor's location and the moon, to mimic the appearance of a full moon. Added bonus of being able to display messages







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited 3 hours ago

























              answered 5 hours ago









              Chromane

              3,322425




              3,322425








              • 1




                How is nuclear a problem? The technology has been available since world war 2
                – Shadowzee
                5 hours ago










              • I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
                – Chromane
                5 hours ago






              • 1




                The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
                – Cadence
                5 hours ago










              • @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
                – Gary Walker
                3 hours ago
















              • 1




                How is nuclear a problem? The technology has been available since world war 2
                – Shadowzee
                5 hours ago










              • I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
                – Chromane
                5 hours ago






              • 1




                The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
                – Cadence
                5 hours ago










              • @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
                – Gary Walker
                3 hours ago










              1




              1




              How is nuclear a problem? The technology has been available since world war 2
              – Shadowzee
              5 hours ago




              How is nuclear a problem? The technology has been available since world war 2
              – Shadowzee
              5 hours ago












              I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
              – Chromane
              5 hours ago




              I meant in terms of scale and providing fuel - technologically it's probably fine. Will edit
              – Chromane
              5 hours ago




              1




              1




              The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
              – Cadence
              5 hours ago




              The mirror satellites strike me as the best idea, simply because they have the fewest moving parts (aside from faking it with earthbound aircraft). Getting maintenance technicians up to fix objects in orbit, let alone on the moon, is a nontrivial task.
              – Cadence
              5 hours ago












              @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
              – Gary Walker
              3 hours ago






              @Chromane Plenty of Thorium on the moon. Even have a good ore location, so you could use local sourcing. You also have to develop LFTR tech, but that is a drop in the bucket for this project. Solar cells have to be replaced frequently too and require much more infrastructure, esp. considering the huge batteries or electrical grid need to work during the 2 week long nights.
              – Gary Walker
              3 hours ago












              up vote
              0
              down vote













              This is impossible for a multitude of reasons.



              First of all, the moon doesn't really receive enough sunlight to power LEDs covering half of its surface. The amount of energy a single square inch of modern solar panel produces in an hour is only about 0.1 watts, whereas the amount of energy required to power a single modern LED for an hour is 6 watts. That means that an 8"x8" solar panel would be required to constantly power an LED that takes up a fraction of a square inch of space. Area-wise, the bright side of the moon just isn't big enough to power its opposite half.



              Second, there is the issue of transporting the power you get to the LEDs. Every cable that we have loses power for every foot that it travels, which is a natural limit on how far power can be transported. Even with fiber optic -- the most efficient path we could use with 2018 technology -- the power loss experienced over the hundreds of miles of the moon's diameter would be too great for anything to reach the other end.






              share|improve this answer





















              • We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
                – Alexander
                5 hours ago










              • @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
                – JBH
                4 hours ago















              up vote
              0
              down vote













              This is impossible for a multitude of reasons.



              First of all, the moon doesn't really receive enough sunlight to power LEDs covering half of its surface. The amount of energy a single square inch of modern solar panel produces in an hour is only about 0.1 watts, whereas the amount of energy required to power a single modern LED for an hour is 6 watts. That means that an 8"x8" solar panel would be required to constantly power an LED that takes up a fraction of a square inch of space. Area-wise, the bright side of the moon just isn't big enough to power its opposite half.



              Second, there is the issue of transporting the power you get to the LEDs. Every cable that we have loses power for every foot that it travels, which is a natural limit on how far power can be transported. Even with fiber optic -- the most efficient path we could use with 2018 technology -- the power loss experienced over the hundreds of miles of the moon's diameter would be too great for anything to reach the other end.






              share|improve this answer





















              • We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
                – Alexander
                5 hours ago










              • @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
                – JBH
                4 hours ago













              up vote
              0
              down vote










              up vote
              0
              down vote









              This is impossible for a multitude of reasons.



              First of all, the moon doesn't really receive enough sunlight to power LEDs covering half of its surface. The amount of energy a single square inch of modern solar panel produces in an hour is only about 0.1 watts, whereas the amount of energy required to power a single modern LED for an hour is 6 watts. That means that an 8"x8" solar panel would be required to constantly power an LED that takes up a fraction of a square inch of space. Area-wise, the bright side of the moon just isn't big enough to power its opposite half.



              Second, there is the issue of transporting the power you get to the LEDs. Every cable that we have loses power for every foot that it travels, which is a natural limit on how far power can be transported. Even with fiber optic -- the most efficient path we could use with 2018 technology -- the power loss experienced over the hundreds of miles of the moon's diameter would be too great for anything to reach the other end.






              share|improve this answer












              This is impossible for a multitude of reasons.



              First of all, the moon doesn't really receive enough sunlight to power LEDs covering half of its surface. The amount of energy a single square inch of modern solar panel produces in an hour is only about 0.1 watts, whereas the amount of energy required to power a single modern LED for an hour is 6 watts. That means that an 8"x8" solar panel would be required to constantly power an LED that takes up a fraction of a square inch of space. Area-wise, the bright side of the moon just isn't big enough to power its opposite half.



              Second, there is the issue of transporting the power you get to the LEDs. Every cable that we have loses power for every foot that it travels, which is a natural limit on how far power can be transported. Even with fiber optic -- the most efficient path we could use with 2018 technology -- the power loss experienced over the hundreds of miles of the moon's diameter would be too great for anything to reach the other end.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered 6 hours ago









              Bewilderer

              4689




              4689












              • We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
                – Alexander
                5 hours ago










              • @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
                – JBH
                4 hours ago


















              • We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
                – Alexander
                5 hours ago










              • @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
                – JBH
                4 hours ago
















              We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
              – Alexander
              5 hours ago




              We don't need 6 watt LED bulbs. They should only produce as much light as illuminated Moon surface.
              – Alexander
              5 hours ago












              @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
              – JBH
              4 hours ago




              @Alexander, according to this XKCD, sunlight bathes the moon in 1Kw/m. Modern square LED panels aren't much different in size to the old round LED bulbs, r~=4mm including the base or 5.026e-5 m^2. That's basically 18,967 LED per square meter for 52.7mW per LED. You're right, we don't need a 6w LED, unless you need a lot of space between the LEDs (like detectors to turn off LEDs when bathed in sunlight, overly big ones. This is a government operation, after all).
              – JBH
              4 hours ago










              up vote
              0
              down vote













              Much cheaper option:



              Every evening, send a large LED panel into the upper troposphere, e.g., with balloons and haul it down every morning. Since the panel is a lot closer to the ground, it can affordably be a lot smaller in cross section than the moon.



              Plus side:



              You can then rig the LED panel like a normal TV or monitor.



              Minus side:




              • It will always remain in the same place.

              • There will normally be two "moons" in the sky.






              share|improve this answer

























                up vote
                0
                down vote













                Much cheaper option:



                Every evening, send a large LED panel into the upper troposphere, e.g., with balloons and haul it down every morning. Since the panel is a lot closer to the ground, it can affordably be a lot smaller in cross section than the moon.



                Plus side:



                You can then rig the LED panel like a normal TV or monitor.



                Minus side:




                • It will always remain in the same place.

                • There will normally be two "moons" in the sky.






                share|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Much cheaper option:



                  Every evening, send a large LED panel into the upper troposphere, e.g., with balloons and haul it down every morning. Since the panel is a lot closer to the ground, it can affordably be a lot smaller in cross section than the moon.



                  Plus side:



                  You can then rig the LED panel like a normal TV or monitor.



                  Minus side:




                  • It will always remain in the same place.

                  • There will normally be two "moons" in the sky.






                  share|improve this answer












                  Much cheaper option:



                  Every evening, send a large LED panel into the upper troposphere, e.g., with balloons and haul it down every morning. Since the panel is a lot closer to the ground, it can affordably be a lot smaller in cross section than the moon.



                  Plus side:



                  You can then rig the LED panel like a normal TV or monitor.



                  Minus side:




                  • It will always remain in the same place.

                  • There will normally be two "moons" in the sky.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  nzaman

                  8,77711443




                  8,77711443






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Worldbuilding Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f131609%2falways-a-full-moon-for-the-emperor-can-this-be-achieved-with-solar-panels-and%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      サソリ

                      広島県道265号伴広島線

                      Setup Asymptote in Texstudio